
دستورالعمل ضوابط تاسیسات مکانیکی و برقی در بیمارستان ها
Permanent link to this article: https://peg-co.com/home/%d8%a8%d8%b1%d9%82-%d8%a7%d8%b6%d8%b7%d8%b1%d8%a7%d8%b1%db%8c-%d8%af%d8%b1-%d8%a8%db%8c%d9%85%d8%a7%d8%b1%d8%b3%d8%aa%d8%a7%d9%86%d9%87%d8%a7/
تحقیقات و پروژه برق و الکترونیک
از کاربردهای موتور سنکرون در حالت بی باری «کندانسور سنکرون» است. در این حالت این موتور همچون خازن یا سلفی رفتار می کند که جهت تنظیم ولتاژ و کنترل توان راکتیو مورد بهره برداری قرار می گیرد.
خصوصیت ماشین های الکتریکی سنکرون آن است که سرعت چرخش روتور و سرعت چرخش میدان دوار استاتور با هم برابر است که این سرعت را سرعت سنکرون می نامند (بدین جهت این ماشین از نوع ماشین های سرعت ثابت محسوب می شود) که طبق آنچه در درس ماشین های الکتریکی ۳ فرا گرفتیم این سرعت به فرکانس تغذیه، جریان های جاری در استاتور و قطب های سیم پیچی استاتور بستگی دارد.
نکته ی دیگر که حائز اهمیت است و از نقاط اشتراک این نوع ماشین با ماشین آسنکرون می باشد، سیم پیچی سه فاز استاتور است که در داخل آن شیارهای استاتور جا می گیرد.
در مورد روتور این ماشین باید این نکته را متذکر شد که روی روتور یک سیم پیچ معمولی با ۲ ترمینال وجود دارد که در هر ۲ حالت کاری ماشین (موتور و ژنراتور) به برق DC متصل می شود. روتور این نوع ماشین در دو نوع ساخته می شود:
۱- قطب برجسته (شکل ۱)
۲- قطب صاف (شکل ۲)
نوع قطب صاف معمولا در سرعت های بالاتر و با تعداد دور کمتر ساخته می شود در حالی که نوع قطب برجسته به طور معمول تعداد قطب های بیشتر و سرعت کمتری دارد.
شکل ۲- روتور قطب برجسته شکل ۱- روتور قطب صاف
۱) ژنراتور سنکرون:
در حالت کار ژنراتوری در سیم پیچ سه فاز استاتور ولتاژ ac القا می شود که فرکانس آن به دور سنکرون بستگی دارد. در چنین حالتی باید محور ژنراتور توسط یک محرک چرخانده شود.
۲) موتور سنکرون:
در این حالت استاتوربه یک سیستم برق سه فاز متصل شده و روتور با دور سنکرون که وابسته به فرکانس شبکه و قطب های استاتور است به گردش در خواهد آمد.
در هر دو حالت موتوری و ژنراتوری ولتاژ DC به روتور اعمال می گردد. در حالت موتوری آهن ربای ایجاد شده روی روتور همراه با میدان دوار می گردد و در حالت ژنراتوری بر اثر چرخاندن این آهن ربا توسط محرک خارجی، میدان دواری ایجاد می شود که در سیم پیچ استاتور ولتاژ القا می کند .
موازی کردن ژنراتورهای سنکرون Synchronous Generator
امروزه به ندرت میتوان مولد همزمانی یافت که مستقل از دیگر مولدها کار کند و به تنهایی بار خودش را تغذیق کند. چنین حالتی را تنها در کاربردهای اندکی، مثلاًبه عنوان مولدهای اضطراری میتوان یافت. در کاربردهای معمولی همیشه تعدادی مولد به طور موازی توان مورد نیاز بارها را تولید میکند .
مزایای موازی کردن ژتراتورها :
۱٫ باری که چند مولد میتوانند تأمین کنند بیشتر از باری است که یک ماشین به تنهایی تاٌمین میکند .
۲٫ داشتن موتدهای زیاد، قابلیت اطمینان را افزایش میدهد، چون خرابی یکی از آنها موجب نمیشود که تمام توان توان تأمین شده برای بار قطع شود .
۳٫ اگر تعداد مولدها زیاد باشد امکان خارج کردنیک یا چند مولد از مئار برای سرویس و نگهداری موجود است .
شرایط لازم برای موازی کردن ژنراتورها
۱٫ مقدار rms ولتاژهای خط دو مولد باید برابر باشد .
۲٫ دو مولد باید ترتیب فاز یکسانی داشته باشند .
۳٫ زوایای فاز باید برابر باشد .
۴٫ بسامد مولد جدید (مولدی که به مدار وارد میشود) باید اندکی بیشتر از بسامد سیستم در حال کار باشد .
روش کلی موازی کردن ژنراتورها
فرض کنید بخواهیم مولدی را به سیستم در حال کاری وصل کنیم، برای این کار باید مراحل زیر را انجام دهیم :
نخست با استفاده از ولتمتر، جریان میدان مولد جدید را تنظیم میکنیم تا ولتاژ پایانهاش برابر ولتاژ خط سیستم در حال کار شود .
دوم، ترتیب فاز مولد جدید را با ترتیب فاز سیستم در حال کار مقایسهع میکنیم .این کار را به چند راه مختلف میتوان انجام داد، یکی از این راهها روش سه لامپی است. در این روش بین سه لاکپ را با کلیدی که مولد را به سیستم وصل میکند موازی میکنیم وقتی که زاویۀ فاز بین دو سیستم تغییر میکند، لامپها پرنور (اختلاف فاز زیاد) و کمنور (اختلاف فاز کم) میشود .اگر هرسه لامپ با هم پرنورو کمنور شوند ف دو سیستم ترتیب فاز یکسانی دارند .
سپس بسامد مولد جدید را باید تنظیم کرد تا بیشتر از بسامد سیستم در حال کار باشد. برای این کار ابتدا با بسامدسنج، بسامدها رال اندازه میگیریم تا بسامدهای نزدیک به هم به دست آید و سپس تغییرات فاز بین دو سیستم را در نظر میگیریم وقتی که بسامدها خیلی نزدیک به هم باشند، فاز ولتاژهای دو سیستم نسبت به هم خیلی کند حرکت میکند. این تغییرات فاز را مشاهده میکنیم و هنگامیکه زوایای فازها نسبت به هم برابر شوند کلید را میبندیم .
چه وقت میتوان گفت دو سیستم همفازند؟ یک راه ساده مشاهدۀ سه لامپی است هنگامی که هر سه لامپ خاموشند، اختلاف ولتاژ دو سر آنها صفر است و دو سیستم همفازند. البته این روش زیاد دقیق نیست و راه بهتر استفاده از سنکروسکوپ
است .
موازی کردن ژنراتور با شبکه ی فشار ضعیف:
برلی اتصال ژنراتور به شبکه ی سه فاز کشور بایستی سه شرط که شرایط پارالل کردن نامیده می شوند برقرار باشند:
۱) دامنه ی ولتاژ خط ژنراتور و شبکه یکسان باشد :جهت برقراری این شرط به دو ولتمتر برای اندازه گیری ولتاژهای خط ژنراتور و شبکه نیازمندیم که به صورت شکل ۳ در مدار قرار می گیرد.
۲) تساوری فرکانس ژنراتور سنکرون و شبکه : جهت برقراری این شرایط هم به دو عدد فرکانس متر مطابق شکل ۳ نیازمندیم.
۳) توالی فازها: فازهای متناظر دو سیستم بایستی دارای اختلاف فاز صفر باشند. به دیگر سخن بایستی ستاره های دو شبکه بر هم منطبق باشند.
در عمل تنها ماشین سنکرون در اختیار ماست لذا بایستی شرایط ماشین سنکرون را به نحوی تغییر دهیم تا با شرایط شبکه ی سه فاز هماهنگ گردد.
جهت برقراری شرط تساوی فرکانس ژنراتور سنکرون از روابط زیر استفاده خواهیم کرد:
لذا با تنظیم دور محرکی که باعث چرخش ژنراتور می گردد می توان فرکانس مورد نظر شبکه یعنی ۵۰Hz را تامین کرد. این کار در محرک توسط رئوستای مدار تحریک انجام می شود.
جهت تنظیم ولتاژ ژنراتور سنکرون هم جریان تحریک آن را آنقدر تغییر می دهیم تا ولتاژ خروجی آن به ولتاژ شبکه برابر گردد.
مهمترین و سخت ترین شرط در حوزه ی عمل شرط توالی فازهاست که شاید چندین دقیقه برقراری آن طول بکشد. جهت تست کردن این شرط راه های فراوانی موجود است که یکی از این روش ها استفاده از عقربه ی فاز نما است که وقتی این شرط محقق می گردد عقربه مقابل شاخص قرار خواهد گرفت که در آن لحظه بایستی کلید اتصال ژنراتور به شبکه را وصل نمود.
شکل ۳- بررسی برابر بودن فرکانس و سطح ولتاژ در دو طرف کلید
روش دیگر قرار دادن لامپ ها به صورت سری است (شکل ۴). مطابق این شکل وقتی اختلاف فاز صفر شد لامپها خاموش می گردند. اگر لامپ ها بین دو فاز قرار گیرند سیستم از نوع تمام روشن خواهد بود.
روشی که در آزمایشگاه از آن استفاده می شود، سیستم لامپی با اتصال فازهای غیر متناظر است که وقتی شرط توالی فاز برقرار شد لامپها یک در میان روشن می شوند. (شکل ۵-ب)
در آزمایشگاه جهت تحقیق سه شرط بالا از سنکروسکوپ استفاده خواهیم کرد که با وصل نمودن برق شبکه و پایانه های استاتور ژنراتور به آن، ولتاژ ژنراتور و شبکه بطور همزمان نمایش داده شده و شرط توالی فاز را هم به وسیله ی چراغهایی با اتصال فازهای غیرمتناظر نمایش می دهد که در لحظه ی خاموش و روشن شدن یک در میان چراغها، بایستی کلید را وصل نمود تا ماشین به شبکه سه فاز فشار ضعیف کشور وصل شود .
شکل ۴- سیستم لامپی تمام خاموش
شکل ۵- سیستم های لامپی تمام روشن (a) روشن – خاموش – روشن (b)
نکته ۱:
اگر مدتی صبر کردیم ولی شرط توالی فاز برقرار نگردید بایستی جای دو فاز ژنراتور را با هم عوض کنیم.
نکته ۲:
درست است که برای نمایش فرکانس و ولتاژ به طور کلی از سنکروسکوپ آزمایشگاه استفاده می کنیم لیکن در داخل آن فرکانس متر به طور تکفاز به مدار وصل شده است.
با تغییر جریان تحریک ژنراتور در حالی که با شبکه پارالل شده است می توان توان تولید شده را از پیش فاز به پس فاز تغییر داد، بدین صورت که با کاهش جریان تجریک از حالت پیش فاز به پس فازی می رویم. در ضریب توان ۱ توان راکتیو داده شده به شبکه صفر خواهد شد، در این حالت روی مینیمم منحنی های U شکل قرار داریم. با افزایش جریان تحریک می توان توان راکتیو داده شده به شبکه را افزایش داد .
شکل ۶- اثر جریان تحریک بر ضریب توان و جریان آرمیچر
در شکل فوق اگر بار افزایش پیدا کند منحنی U شکل حاصل بالاتر از منحنی فعلی خواهد بود.
در همین حال اگر توان ورودی به ژنراتور افزایش یابد، دور آن تغییری نمی کند بلکه توان اکتیو تزریقی به شبکه افزایش خواهد یافت.
شرح آزمایش:
قبل از انجام هرکاری پس از شناسایی ماشین سنکرون توصیه می گردد حتما داده های پلاک این مایشن را یادداشت نمایید. این داده ها عبارتند از:
· دور نامی (Nr)
· ولتاژ و نحوه ی اتصال ماشین (۳۸۰Y)
· توان خروجی ماشین (Pn)
· ضریب قدرت (cosϕ)
· فرکانس کار ماشین (f)
پس از آن مدار را به صورت زیر جهت انجام آزمایش بی باری وصل می کنیم. (با توجه به داده های پلاک بایستی استاتور به صورت ستاره وصل شود)
شکل ۷- آزمایش بی باری ماشین سنکرون
جهت چرخاندن ژنراتور از یک موتور شنت که هم دور با ژنراتور است استفاده خواهیم کرد. ضمنا برای مشخص شدن دور ژنراتور که آیا به دور نامی رسیده یا نه از یک فرکانس متر (سنکروسکوپ) استفاده خواهیم کرد که یک فاز ژنراتور را به آن وصل نموده و هرگاه فرکانس نامی شد، دور نامی خواهد بود.
پس از وصل نمودن برق محرک شنت آنرا به دور نامی می رسانیم (با تغییر رئوستای مدار تحریک). چنانکه ذکر شد هر گاه فرکانس نامی گردید دور نامی است. سپس اولین نقطه ی ولتاژ و جریان بی باری را که ولتاژ پسماند نام دارد در جدول ۷-۱ یادداشت می نماییم. پس از آن تحریک ژنراتور سنکرون را وصل کرده (توصیه می شود هنگام وصل کردن تحریک به ولتاژ DC از یک صافی خازنی جهت تثبیت ولتاژ استفاده نمایید) و به تدریج ولتاژ را تغییر می دهیم تا ولتاژ برابر ولتاژ نامی هر کلاف گردد و جدول ۷-۱ را کامل خواهیم کرد.
پس از انجام آزمایش بی باری، بار سه فاز اهمی پله ای به پایانه های استاتور (شکل ۸) وصل می کنیم. پس از وصل بار و روشن کردن موتور و رسیدن ژنراتور به دور نامی (با قرائت فرکانس متر که به استاتور وصل است) پله پله بار را اضافه می کنیم. دقت کنید که دور افت نکند. در این حالت جدول ۷-۲ را تکمیل خواهیم کرد. (جریان فاز بار را به وسیله ی آمپرمتر چنگکی اندازه بگیرید(Aac))
شکل ۸- آزمایش بارداری ژنراتور سنکرون مستقل
پس از انجام آزمایش های بالا نوبت به آزمایش پارالل می رسد، لذا مدار را مطابق شکل ۹ بسته و به جای ولتمتر و فرکانس متر پایانه های استاتور و ورودی های شبکه را به سنکروسکوپ وصل خواهیم کرد.
شکل ۹- پارالل کردن ژنراتور سنکرون با شبکه
ابتدا محرک را وصل کرده و در حالیکه پایانه های شبکه و پایانه های استاتور به سنکروسکوپ وصل شده است ژنراتور را به وسیله ی سیم پیچ تحریک آن در حد ولتاژ شبکه راه اندازی می نماییم.
فرکانس را با تغییر رئوستای مدار تحریک محرک به فرکانس شبکه می رسانیم و در ژنراتور هم به وسیله ی سیم پیچ تحریک ژنراتور آنچنانکه گفته شد در حد ولتاژ شبکه ولتاژسازی می نماییم.
مدتی صبر کرده تا وضعیت چراغهای سنکروسکوپ یکی در میان روشن و خاموش گردد که به محض بر قراری این حالت بایستی کلید سه فاز روی سنکروسکوپ را از حالت ۰ به ۱ تغییر دهیم و ژنراتور را به شبکه وصل نماییم.
نکته:
برای اینکه بدانیم سنکروسکوپ از چه نوع سیستم لامپی ای استفاده می کند یک روش استفاده از اهمتر است ولی روش راحتتر آن است که کلید را در حالی که ژنراتور به سنکروسکوپ وصل نیست در حالت ۱ قرار دهیم، در این صورت چراغها به همان ترتیبی روشن و خاموش می مانند که مورد نظر ماست.
چنانچه مدتی صبر کردیم لیکن وضعیت مورد نظر در چراغ ها دیده نشد، جای دو فاز استاتور را در سنکروسکوپ عوض کرده و مجددا امتحان می کنیم.
با نزدیک شدن ژنراتور به دور نامی سرعت خاموش – روشن شدن چراغ ها کاهش می یابد، علت این است که سرعت چرخش سیستم سه فاز شبکه و میدان دوار ژنراتور رفته رفته به هم نزدیک می شود و سرعت نسبی این سیستم ها کاهش می یابد.
نکته:
جالب توجه است که پس از وصل شدن ژنراتور به شبکه چنانچه محرک موتور را قطع نماییم ملاحظه خواهیم کرد که ژنراتور خود به تنهایی با سرعت نامی (۱۵۰۰rpm) هنچنان در حال چرخش است (وارد حالتی موتوری شده است). در این وضعیت جهت توان اکتیو عوض می شود و موتور سنکرون توان اکتیو از شبکه جذب می کند.
جداول:
جدول ۷-۱، داده های آزمایش بی باری
ولتاژ پسماند در این آزمایش ۰٫۳V اندازه گیری شد.
نکته:
جهت تنظیم جریان تحریک در مقادیر پایین از دو رئوستای سری استفاده شد.
نکته:
رئوستای تنظیم جریان تحریک دارای حداکثر جریان مجاز می باشد که در این آزمایش ۱A بود. پس از رسیدن به این محدودیت از دو رئوستای موازی با هم استفاده شده است.
نکته:
همان طور که ملاحظه می شود جریان تحریک را تا رسیدن به ولتاژ نامی زیاد کرده ایم.
نکته:
در این آزمایش جریان تحریک را رفته رفته زیاد می کنیم و ولتاژ خروجی را در دور سنکرون اندازه می گریم. بنابراین نیاز داریم که سرعت را به صورت مداوم چک کنیم. اگر سرعت سنج کار نمی کرد جهت سیم پیچ شنت تحریک را عوض کنید.
جدول ۷-۲-۱، داده های آزمایش بارداری برای بار مقاومتی
نکته:
بار سلفی منحنی مشابهی خواهد داشت (آزمایش نشد) و بار خازنی به علت توان راکتیوی که می دهد باعث افزایش ولتاژ می شود و زیاد شدن شده و برای ژنراتور خطرناک است به همین خاطر از ولتاژ ۲۲۰V شروع می کنیم:
جدول ۷-۲-۱، داده های آزمایش بارداری برای بار خازنی
نمودار:
رسم نمودار جداول ۷-۱ و ۷-۲.
شکل ۱۰- آزمایش بی باری ژنراتور سنکرون
شکل ۱۱- آزمایش بارداری ژنراتور سنکرون در بار مقاومتی
شکل ۱۲- آزمایش بارداری برای بار خازنی
نتیجه گیری :
۱٫ باری که چند مولد میتوانند تأمین کنند بیشتر از باری است که یک ماشین به تنهایی تاٌمین میکند .
۲٫ داشتن موتدهای زیاد، قابلیت اطمینان را افزایش میدهد، چون خرابی یکی از آنها موجب نمیشود که تمام توان توان تأمین شده برای بار قطع شود .
۳٫ اگر تعداد مولدها زیاد باشد امکان خارج کردنیک یا چند مولد از مئار برای سرویس و نگهداری موجود است .
روش پارالل یکی از روش های راه اندازی ژنراتور سنکرون است که معمولا در نیروگاه ها استفاده می شود. چراکه وقتی سرعت سنکرون نباشد گشتاور راه اندازی بالایی نیاز خواهیم داشت، لذا بایستی برای راه اندازی سرعت میدان استاتور و روتور سنکرون شود و پس از وصل ژنراتور به شبکه محرک را قطع نماییم.
روش دیگری که معمولا در نیروگاه ها کاربرد دارد استفاده از سیم پیچ دمپر[۱] است که این سیم پیچ در ماشین های سنکرون وجود دارد و بوسیله ی آن گشتاور راه اندازی تولید می شود (مشابه ماشین های القایی روتور قفسی). در این روش تحریک ماشین سنکرون در ابتدا وصل نیست و باید صبر کرد ماشین با استفاده از روش مذکور به اندازه ی کافی دور بگیرد (مثلا ۱۰rpm اختلاف)، پس از آن می توان تحریک را وصل نمود.
روش دیگر راه اندازی استفاده از یک مبدل فرکانس با فرکانسی معادل ۱ یا ۲ هرتز برای راه اندازی است و رفته رفته فرکانس باید زیاد شود تا نهایتا به فرکانس نامی برسد.
Permanent link to this article: https://peg-co.com/home/%d8%b1%d9%88%d8%b4-%d9%be%d8%a7%d8%b1%d8%a7%d9%84%d9%84-%da%a9%d8%b1%d8%af%d9%86-%da%98%d9%86%d8%b1%d8%a7%d8%aa%d9%88%d8%b1%d9%87%d8%a7/

همه چیز درباره یو پی اس
سر فصلها
فرق یو پی اس هایOff Line,Line Interactive,On Line در چیست؟
چگونه یو پی اس مناسب خود را انتخاب کنیم؟
چگونه زمان برق دهی(Back Up) را برای باتری ها محاسبه کنیم؟
انواع باتری های قابل استفاده در UPS یو پی اسکدامند؟
در صورتی که بخواهیم UPS یو پی اسبا ژنراتور سنکرون گردد چه نکاتی را باید رعایت نماییم؟
در انتخاب باتری با طول عمر مورد نیاز چه نکاتی راباید رعایت کرد؟
یو پی اسکدام کشورها دارای کیفیت بالا می باشد؟(سازندگان کدام کشورها از معروفیت برخوردارند؟)
باتری های کدام کشورها معروف بوده و علت آن چیست؟
قبل از نصب چه موارد ایمنی باید رعایت گردد؟
محل مناسب برای یوپی اس و باتری باید دارای چه ویژگی هایی باشد؟
مشخصات برق ورودی دستگاه چگونه باید باشد و چه نکات ایمنی باید رعایت گردد؟
مشخصات خروجی یوپی اسچیست و چه وسایلی می توان به آن وصل نمود؟
چه وسایلی را نمی توان به یو پی اس وصل نمود؟
چه مواردی در یو پی اسباید مرتب بازبینی شود؟
عوامل موثر در افزایش طول عمر یو پی اس و باتری چیست؟
انواع رابط کامپیوتری و نرم افزار در یو پی اس کدام است؟
کارت SNMP چیست وچه ویژگی هایی دارد؟
آیا امکان تنظیم پارامترهای یو پی اس وجود دارد؟
فرق UPS هایOff Line,Line Interactive,On Line در چیست؟

یو پی اس چیست ؟
یو پی اس برگرفته از مجموعه کلمات Uninterruptible power supply است که دستگاهی الکترونیکی است که به منظور تأمین پیوسته انرژی برای دستگاههای مصرف کننده که به اختلافات موجود در شبکه و قطع برق حساس بوده و جزء مجموعه های کامپیوتری ، مخابراتی ، کنترل ، ابزار دقیق و آزمایشگاهی و بیمارستانی می باشد .
دستگاهی الکترونیکی است به منظور تامین پیوسته انرژی برای دستگاههای مصرف کننده که به اختلالات موجود در شبکه و قطع برق حساس بوده و به دلیل ضرورت و حساسیتهای فوق العاده زیاد جزو تجهیزات حیاتی مجموعههای کامپیوتری، مخابراتی، کنترل و ابزار دقیق، ازمایشگاهی و بیمارستانی میباشند.
کاهش یا افزایش ناگهانی ولتاژ، تغییر فرکانس، انواع اعوجاج لحظه ای یا دایم، نمونههایی از مشکلات ایجاد شده بر روی شبکههای برق شهری میباشند. دستگاه های الکترونیکی پیشرفته و حساس (نظیر سیستمهای کامپیوتری، تجهیزات مخابراتی و پزشکی) با توجه به کاربردهای ویژه و حساسی که دارند نیازمند تجهیزات ضروری مانند منبع تغذیه بدون وقفه و نسبتا دقیق بوده تا ولتاژ و فرکانس ثابت و قابل اطمینان را تامین نماید.
دستگاه یو پی اس از وسایل ضروری کامپیوترها محسوب میشود. به عنوان مثال در صورت وجود کوچکترین اغتشاش در برق شهر بخش کنترل کامپیوتر، با تولید یک پالس موجب خاموش و روشن شدن مجدد (Restart) کامپیوتر میگردد. لذا با این عمل اطلاعاتی که در حافظه RAM سیستم وجود دارد، از بین رفته و زیان های جبران ناپذیری به کاربر وارد شده و حاصل کار کاربر در چند لحظه از بین میرود.
در مورد سایر سیستمهای حساس نظیر دستگاههای مخابراتی و شبکههای اطلاعاتی نیز با قطع یا تغییر مشخصات منبع تغذیه، هماهنگی بخشهای مختلف دستگاه بهم خورده و بر اثر قطع و وصلهای متوالی، علاوه بر صدماتی که به قطعات دستگاه وارد می شود، عملکرد کل سیستم با اختلال مواجه میگردد. با توجه به مطالب فوق، نیاز به وجود دستگاهی که بتواند جایگزین مناسبی برای برق شهر در مواقع اضطراری گردیده و با حذف اختلالات شبکه تغذیه مدارات حساس را بر عهده گیرد، نمایان می شود.
این دستگاه جهت استفاده کاربران، انرژی DC را به AC تبدیل می کند. لازم به ذکر است که در مواقع قطع برق میتوان از ژنراتوهای AC جهت تغذیه دستگاهها استفاده نمود ولی این منابع با توجه به مشکلاتی نظیر شناور بودن ولتاژ و فرکانس، حجم بزرگ، الودگی صوتی، دودزا بودن، زمان طولانی وصل شدن بعداز قطع برق و لزوم سرویس و باز بینی دایمی عملا کاربردی در دستگاههای حساس ندارد. دستگاههای یو پی اس با ابعاد کوچک و بدون نیاز به سرویس دایمی و بدون ایجاد آلودگیها با تثبیت ولتاژ و فرکانس، وسایل بسیار مناسبی جهت حفاظت سیستمها در مقابل اختلالات برق شبکه میباشد.
به منظور افزایش مدت زمان برق دهی در یو پی اس ها از کابینت باتری مجهز به باتری استفاده میباشد.

بطور کلی منبع تغذیه بدون وقفه ( یو پی اس ) دستگاهی است متشکل از قطعات حالت جامد (SOLID – STATE) که بین منبع برق ورودی و بار وصل شده واز بروزاختلافات برق ورودی ( برق شهر ) از جمله قطع کامل آن جلوگیری می کند :
مدل یو پی اس ها از لحاظ ساختار طراحی در یکی از سه حالت , Line interactive ,Off-line On-line قرار می گیرند . صرفنظر از طراحی خاص هر یک ، چند ویژگی مهم در تمامی یو پی اس ها مشترک است . همه آنها دارای باتری هستند و تا زمانی که برق شهر قابل استفاده است انرژی را در باتریها ذخیره می کنند و پس از قطع برق شهر انرژی باتری را به جریان متناوب ((AC تبدیل می کنند . بنابراین تمام سیستمها باید دارای شارژ باتری و مدار اینورتر باشند . همچنین تمام یو پی اس ها دارای یک سیستم Bypass هستند که همراه با یک سوئیچ در خروجی وسیله ارتباط با Load را جهت تغذیه مستقیم از برق شهر فراهم می کنند . در بسیاری از موارد مدار سوئیچ خروجی با به کاربردن سوئیچهای استاتیک تکمیل می شود . البته در یوپی اس های توان پایین این کار به وسیله رله انجام می گیرد .
سیستم off – line
در یو پی اس مدل Off-line بارهای حساس از مسیر By pass انرژی دریــافت می کنند و اگـر تغذیـه مسیر By pass قطع شود یا ولتاژ آن خارج از محدوده قابل قبول و مجاز قرارگیرد ، مسیر اینورتر جایگزین آن می شود . در طی عملکرد عادی دستگاه ، هراختلالی که در محدوده قابل قبول ولتاژ Bypass باشد به بار منتقل می شود . اگر چه در بسیاری از مدلهای این یو پی اس در مسیر Bypass خود تا حدودی از افزایش شدید و ناگهانی ولتاژ (spike ) جلوگیری می کنند و ***** های RF (فرکانس رادیویی ) در مسیر Bypass آنها وجود دارد .
در شرایط عادی شارژر باتری به طور مداوم کار می کند تا باتریها را کاملا آماده نگهدارد . در برخی از یو پی اس ها ممکن است اینورتر خاموش باشد تا راندمان کلی دستگاه افزایش یابد ، اگر چه قسمتهای کنترل الکترونیکی آن به منظور عملکرد سریع اینورتر همواره فعال می باشند.
اگر ولتاژ Bypass از حداقل مجاز پایین تر رود ، اینورتر بلافاصله شروع به کار کرده و بار به وسیله سوئیچ استاتیک ( یا رله خروجی ) به اینورتر منتقل می شود با توجه به این که مراحل انتقال پس از قطع ولتاژ Bypassآغاز می شود وقفه اجتناب ناپذیر در تامین انرژی بار روی می دهد ، اگرچه این وقفه کوتاه به اندازه ۱۰~۲میلی ثانیه است
لازم به ذکراست که اکثربارها به نحو مطلوب و بی آنکــه متحمل اثـرات مضـری شـوند این زمان را پشت سر می گذارند و با عادی شدن وضع برق شهر بار مجددا به مسیر Bypass منتقل می شود.

برخی از مشکلات موجود در برق شهر :
Power failure-1 : (قطع برق) : عبارتست از قطع کامل جریان برق
۲- power surge : (افزایش ولتاژ لحظه ای) : عبارتست از افزایش دامنه ولتاژ برق شهر برای چند سیکل متوالی
۳- power sag : (افت ولتاژ لحظه ای) :عبارتست از کم شدن دامنه ولتاژ برق شهر برای چند سیکل متوالی
۴- over voltage : (افزایش طولانی ولتاژ) : افزایش دامنه ولتاژ برق شهر برای مدت طولانی
۵ – under voltage : (کاهش دامنه ولتاژ) : کاهش دامنه ولتاژ برق شهر برای مدت طولانی
۶- spik/transilent : (نوسانات شدید لحظه ای) : نوسانات سریع و ناگهانی ولتاژ
۷- noise : (نویز الکتریکی) : معمولاً توسط منابع تغذیه کامپیوترها و یا امواج رادیویی و مغناطیسی ایجاد می شود .
۸- frequency variniation : (تغییرات فرکانس) : تغییرات در فرکانس برق شهر
۹- Harmonics : (هارمونیکا) : یک موج اضافی با دانه کوچک که فرکانس آن مضربی از فرکانس موج اصلی می باشد .

یو پی اس ها چند دسته هستند ؟دسته بندی یو پی اس ها غالباً در سه قسمت انجام می شود.
۱-Off line
۲-On line
۳-Line interactive
Off line : این دسته از یوپی اس ها هنگام قطع برق و به عنوان منابع جایگزین فعال می شوند .
On line : در شرایط طبیعی ، تأمین خروجی در این نوع یوپی اس ها پس از تصحیح ورودی ( پاک سازی ورودی از نویز و احیاناً سطح ولتاژ ورودی ) انجام می پذیرد تنها در مواقعی چون بروز نقص فنی ، over load یا افزایش خارج از رنج دما ، یو پی اس به مد Bypass می رود .
Line interactive : در شرایط عادی این یو پی اس ها ورودی از طریق Bypass به ترانسفورماتور منتقل می شود در این هنگام ترانسفورماتور به عنوان شارژر عمل می کند و در نهایت از همین طریق خروجی AC تأمین می گردد .
از مشخصات یک یو پی اس مناسب چیست ؟
• حفاظت در مقابل رعد و برق و افزایش ناگهانی ولتاژ برق
• حفاظت در مقابل برگشت ولتاژ روی دوشاخه ورودی در حالت استفاده از باتری
• حفاظت در مقابل دو فاز شدن برق ورودی
• حفاظت از دستگاه های مصرف کننده در مقابل تغییرات ولتاژ خروجی خارج از محدوده مجاز
• حفاظت در مقابل تغییرات ولتاژ و فرکانس برق ورودی
• حفاظت در مقابل افزایش بیش از حد دمای داخل دستگاه
• حفاظت در مقابل نویزهای common mod موجود در برق شهر
• حفاظت در مقابل اضافه بار و اتصال کوتاه خروجی
• حفاظت در مقابل اتصال معکوس باتری
• حفاظت در مقابل اتصال کوتاه شارژر
• حفاظت در مقابل اتصال کوتاه باتری
• حفاظت در مقابل تخلیه غیر مجاز باتری
• حفاظت درمقابل ولتاژ بالا تر از حد مجاز شارژ باتری
• حفاظت از خط تلفن ، فکس ، مودم و شبکه

باتری های چند دسته اند ؟۱- باتری خشک
۲- باتری ژله ای
۳- باتری اسیدی
که برای دستگاه یو پی اس بهترین نوع باتری خشک می باشد که مزایای آن عبارتست از : طول عمر بالا ، عدم نیاز به نگهداری و سرویس و عدم تولید بخار اسید.
زمان برق دهی دستگاه یو پی اس چقدر است ؟
زمان برق دهی یو پی اس به دو عامل بستگی دارد :
۱- تعداد سیستم ها و میزان بار
۲- ظرفیت باتری مورد استفاده
که این زمان از ۵ تا ۷ دقیقه برای save اطلاعات و خاموش کردن سیستم شروع و تا بک آپ های بالا ادامه دارد
در ابتدا به تشریح برخی از اشکالات احتمالی و رایج در منبع توان ورودی نظیرافزایش سریع و ناگهانی ولتاژ (Spike) ، نویز (Noise)،افزایش ولتاژ لحظه ای (Surge) ، افت ولتاژ لحظه ای ( Sag ) ، هارمونیک(Harmonic) ،افت طولانی ولتاژ( Brownouts ) ، قطع برق شهر( Blackouts ) ،نوسانات فرکانسی Frequency variation) ) و زمان سوئیچینگ گذرا می پردازیم :
افزایش سریع و ناگهانی ولتاژ ( Spike )

spike ها ولتاژهای سریع ، ناگهانی و گذرا با طول زمانی کوتاهی هستند که می توانند به نواحی مثبت و یا منفی شکل موج اصلی برق اضافه شوند ، صاعقه ای که بصورت موضعی به زمین اصابت میکند بویژه زمانی که به کابلهای ارتباطی برق القاء شود از مهم ترین عوامل تولید این نوسانات میباشد. البته خارج شدن بارهای القایی و تجهیزاتی که جریانهای الکتریکی زیادی را Switch میکنند نظیر بارهای سلفی و خازنی ، یا بارهایی که بوسیله شرکت های برق Switch می شوند ، نیز می توانند سبب ایجاد اسپایک گردند . اسپایکها می توانند به اجزای الکتریکی خسارت وارد کرده یا آنها را از بین ببرند . مثلا براحتی وارد مدارات منبع تغذیه شده و سبب آسیب های سخت افزاری ونرم افزاری شوند.
نویز (Noise):
نویزها اغلب به دو صورت مد معمولی (normal mode)و مد مشترک (common mode) ظاهر میشوند. نویز حالت معمولی ، نتیجه اختلال بین ولتاژهای فاز به فاز و فاز به نول است ونویز حالت مشترک ناشی از بروز اختلال بین خطوط منبع وزمین می باشد.
نویزها سیگنالهای ناخواسته ای هستند که غالباً از چند میلی ولت تا چند ولت دامنه داشته و بر روی سیگنال های اطلاعات سوار شده و سبب تخریب یا ایجاد اختلال در ارسال اطلاعات (Hang کردن کامپیوتر) ، عملکرد نامطلوب دستگاههای حساس ، خرابی هارددیسک و حتی صفحه نمایش و …می گردند. موتورها ، پرینترهای لیزری، دستگاههای جوشکاری ،سیستمهای رادار ، فرستنده های رادیویی ، منابع تغذیه سوییچینگ و …می توانند مولد نویز باشند. لازم به ذکر است که در شبکه های کامپیوتری و سایتها ، مجاورت کابلهای شبکه(دیتا) با برق در صورتی که فاقد عایق یا روکش مناسب باشند نیز می تواند سبب ایجاد نویز و عواقب ناشی از آن گردد. البته کابل کشی مجهز به ارت استاندارد ،استفاده از دستگاههای یوپی اس با تجهیزات ارتینگ مناسب ( جهت به حداقل رساندن EMI یا تداخل الکترو مغناطیسی و RFI یا تداخل فرکانس رادیویی) و قرار دادن بارهای مصرفی در مکانهایی که حتی الامکان از منابع مولد نویز دور باشند ، میتواند به طور قابل ملاحظه ای از تاثیرات نا مطلوب نویزها بر عملکرد دستگاههای حساس بکاهد.
افزایش ولتاژ لحظه ای (Surge)
عبارت است از افزایش دامنه ولتاژ که برای مدت یک سیکل تا حدود یک دقیقه بروی خطوط انتقال به وجودمی آید. Surge بر خلاف Spike چون از یک سیکل بزرگتر است مقدار ولتاژ متوسط را تغییر نمی دهد ، اما چون دارای زمان بیشتری است اثرات نامطلوبی را بر منابع تغذیه سوئیچینگ دارد و سبب کاهش طول عمر یا خرابی تجهیزات الکترونیکی می شود . علت عمده تولید آن علاوه بر رعد و برق خارج شدن بارهای الکتریکی بزرگ مانند الکترو موتورها از خطوط برق یا بروز نقص وخطا در تجهیزات تامین کننده برق منطقه ای میباشد .
افت ولتاژ لحظه ای ( Sag)
عبارت است از کاهش دامنه ولتاژ که برای مدت یک سیکل تا حدود یک دقیقه بروی خطوط انتقال به وجودمی آید. که این امر ناشی از شروع به کار کردن یک بار بزرگ با جریان بالا مانند دستگاههای تهویه یا موتورهای الکتریکی است.(لازم به ذکر است که یک موتور میتواند جریان راه اندازی بیشتر یا معادل ۶ برابر جریان نامی خود داشته باشد .) افت ولتاژ لحظه ای (sag) میتواند سبب خرابی تجهیزات ، ایجاد خطا در پردازش داده و یا از دست دادن اطلاعات شود .
هارمونیک(Harmonic)
هارمونیک یک موج اضافی بادامنه کوچک است که فرکانس آن مضربی از فرکانس موج اصلی باشد.
هارمونیکها عموماً توسط بارهای غیر خطی بوجود می آیند که از برق شهر جریان هایی غیرخطی با دامنه بالا می کشند . یکسو سازهای کنترل شده ، منابع تغذیه سوییچینگ و ماشین های الکتریکی را می توان بعنوان منابع ایجاد این نوع تاثیر نام برد . همچنین می توان به کامپیوترها ، دستگاههای فتوکپی ، پرینترهای لیزری و موتورهای دوار با سرعت متغیر نیز اشاره کرد.هارمونیکهای اضافی باعث بروز خطا در شبکه و افزایش حرارت دستگاهها می شوند.
البته استفاده از تجهیزاتیکه منبع تغذیه آنها مجهز به مدار اصلاح ضریب توان ورودی باشد در کاهش هارمونیکهای اضافی بسیار موثر است .
افت طولانی ولتاژ( Brownouts )
Brownouts همانند Sag بوده با این تفاوت که طول مدت آن طولانی تر است ، افت ولتاژ طولانی ، اغلب به دلیل عدم توانایی تامین توان مورد نیاز ، توسط منبع اصلی تولید برق می باشد . البته مصرف کننده های بزرگ در ساختمان ومنطقه مانند سیستمهای تهویه مطبوع ویا گرمازا نیز می توانند باعث کاهش ولتاژ شبکه شوند . کاهش ولتاژ به مدت طولانی سبب ایجاد گرمای زیاد در موتورها و خرابیهای عمده ای در تجهیزات الکتریکی می شود.
قطع برق شهر( Blackouts )
عبارت است از قطع کامل جریان برق و در هنگام وقوع آن منبع نیروی برق کاملا از کار می افتد . این وضعیت در اثر بروز اشکال درتجهیزات خطوط نیرو ، حرارت ، طوفان همراه با رعد و برق و سایر شرایط پیش می آید و عواقبی چون از دست دادن اطلاعات وگاهی خرابی تجهیزات مصرفی را به دنبال دارد .
نوسانات فرکانسی ( Frequency variation)
به معنای تغییرات در فرکانس برق شهر یا منبع توان می باشد معمولاً این نوسانات در برق شهر ایجاد نمی شود این مورد که یکی از مشکلات منابع پشتیبانی مانند ژنراتورها می باشد می تواند در عملکرد دستگاههای حساس ایجاد مشکل نماید. البته در صورتیکه نوسانات فرکانسی در بازه وسیعی رخ ندهد بر عملکرد تجهیزات IT تاثیر نا مطلوبی نخواهد داشت .
زمان سوئیچینگگذرا )Switching Transient(
زمان سوئیچ در دستگاههایی همانند کامپیوترها که با منابع تغذیه سوئیچینگ کار میکنند باعث ایجاد پیشامدهای غیر عادی یا نا منظم مانند افت ولتاژ لحظه ای و یا ریست شدن میشود، البته در برخی موارد هم سبب ایجاد خرابی در تجهیزات الکتریکی خواهد شد .

نتیجهگیری :
اختلالات رایج و احتمالی موجود در منبع توان ورودی را به طور مختصر مورد بررسی قرار دادیم، حال با توجه به تجربیات و تحقیقات به عمل آمده در این زمینه به منظور حفاظت و تامین توانی مناسب برای تغذیه تجهیزات حساس مصرفی ، منبع تغذیه بدون وقفه Uninterruptible power system : ups) ( پیشنهاد می گردد .
جهت درک آسانتر به تشریح مفاهیمی در ارتباط با دستگاههای یو پی اس ( مطابق با استاندارد ملی ایران به شماره ۳-۷۰۲۷ ) می پردازیم :
کلیات :
یک سیستم قدرت بدون وقفه یو پی اس(UPS) به صورتی که در استاندارد ملی ایران شرح داده شده یک سیستم قدرت الکترونیکی است .عملکرد اصلی یوپی اس ، تامین پیوستگی و کیفیت مشخصی از توان برای تجهیزات مصرف کننده ، در صورت بروز خرابی کلی یا جزئی منبع اصلی توان که معمولاً شرکت برق منطقه ای است ، می باشد. این عمل با تبدیل برخی از شکلهای انرژی ذخیره شده به توان تغذیه مورد نیاز تجهیزات مصرف کننده در دوره زمانی معین و زمانیکه توان تولید شده توسط شرکت برق به مدت کافی در دسترس نباشد یا قابل قبول نباشد ، انجام می شود .
تجهیزات مصرف کننده که نوعاً به آنها بار حساس یا محافظت شده اطلاق می شود ، ممکن است شامل قسمتی از تجهیزات یا یک اتاق یا ساختمان پر از تجهیزات باشد. این تجهیزات ، تجهیزاتی است که استفاده کننده تشخیص داده است که آنها به توانی دارای پیوستگی و کیفیت بهتری نسبت به توانی که عموماً در دسترس است ، نیاز دارند .
حساس معمولاً شکلی از تجهیزات پردازش داده می باشد ، اگرچه ممکن است تجهیزات دیگری از قبیل وسایل روشنایی ، وسایل اندازه گیری ، پمپها یا تجهیزات مخابراتی نیز باشند .
انرژی ذخیره شده برای تامین تغذیه این بار عموماً به صورت باتری است که ممکن است برای تامین توان تجهیزات به مدت زمان مشخصی که از چند لحظه تا چند ساعت است ، مورد نیاز باشد . این فاصله زمانی معمولاً تحت عنوان زمان انرژی ذخیره شده یا زمان انرژی پشتیبانی (back up) شناخته می شود .
یوپی اس های گوناگون برای بارهای کمتر از یکصد وات تا چندین مگا وات جهت برآورده کردن خواسته های کاربر در مورد پیوستگی و کیفیت توان وجود دارند .

سیستم قدرتبدون وقفهیو پی اس (ups) :
ترکیبی از مبدلها ، کلیدها و وسایل ذخیره کننده انرژی ( برای مثال باتریها ) است که سیستم قدرتی را برای حفظ و نگهداری پیوستگی توان بار ، در حالتی که نقصی در توان ورودی پیش آید تشکیل می دهد.
ازقسمتهای اصلی تشکیل دهنده یک دستگاه یوپی اس می توان به موارد زیر اشاره نمود :
واحد یکسوساز ، واحد اینورتر ، واحد شارژر و باتری
واحد یکسوساز عبارتست از مبدل جریان متناوب به جریان مستقیم
واحد اینورتر عبارتست از مبدل جریان مستقیم به جریان متناوب
واحد شارژر وسیله ای است که برای تبدیل جریان متناوب به جریان مستقیم جهت شارژ نمودن باتری بکار می رود .
باتری ( انباره الکتریکی ) : دو یا چند سلول ذخیره انرژی الکتریکی که به هم وصل شده و به عنوان منبع انرژی الکتریکی استفاده می شوند

انواع توپولوژی یوپی اس :
لازم به ذکر است یادآور شویم اغلب مردم به اشتباه بر این باورند که تکنولوژی یوپی اس محدود به دو نوع standby (off line ) & online می باشد ، درحالیکه تکنولوژیهای متعددی در مورد یوپی اس مطرح است که در این مبحث خلاصه ای از کارکرد و خصوصیات هر توپولوژی را بازنگری و مقایسه می کنیم .
انواع توپولوژی :
۱- standby (off line ) & standby ferro
۲- line interactive
۳- double conversion
۴- delta conversion

تکنولوژی standby (off line )
این توپولوژی عموماً برای تغذیه کامپیوترهای شخصی بکاربرده می شود
در شرایط عملکرد عادی (هنگامیکه منبع توان ورودی در بازه مجاز است ) ، توان از منبع ورودی به transfer switch و خروجی دستگاه یوپی اس انتقال داده می شود و در زمان خرابی منبع ورودی و یا خارج شدن ولتاژ و فرکانس از رواداریهای مجاز ، توان خروجی توسط اینورتر و انرژی ذخیره شده باتری تامین میگردد واینورتر تنها هنگامی شروع به کار میکند که منبع ورودی دچار خرابی گردد .
در این تکنولوژی توان خروجی از کیفیت چندان مناسبی برخوردار نیست و عمومأ در توانهای کم تولید می گردد.، اما راندمان بالا و قیمت پایین از مزایای این طراحی است.
تکنولوژی standby ferro
در این تکنولوژی ترانسفورمری با طراحی و عملکردی خاص بنام فرورزونانت بکاررفته که با به اشباع رفتن هسته ترانس ، ولتاژ تثبیت شده ای در خروجی فراهم میگردد،
در شرایط عادی کارکرد، توان از منبع AC ورودی به سیم پیچ اولیه ترانسفورمر فرو منتقل شده و از ثانویه ترانسفورمر، توان خروجی تثبیت شده با رگولاسیون مناسب به بار مصرفی انتقال می یابد. در زمان خرابی منبع ورودی ، اینورتر شروع به کار کرده و با استفاده از انرژی ذخیره شده باتری وترانسفورمر خروجی توان مورد نیاز تامین میگردد .
ایزولاسیون بسیار خوبی که ترانس فرورزونانت جهت تامین خروجی تثبیت شده ایجاد مینماید از بکار بردن هرگونه تجهیزات مونیتورینگ دیگری مناسبتر است، از اینرو رگلاسیون عالی برق شهر و قابلیت اطمینان بالا از نقاط قوت این تکنولوژی است .
یوپی اس های فرورزونانت با بکار گرفتن بعضی ژنراتورها و بارهای کامپیوتری که ضریب توان ورودی شان اصلاح شده است ، دچار ناپایداری می شوند ، همچنین به دلیل اتلاف حرارتی بالا ، راندمان پایین و حجیم بودن این دستگاهها ، طی چند سال اخیر محبوبیت این طراحی کاهش یافته است.
این تکنولوژی درتوانهای ۳~۱۵ KVA طراحی و تولید می شود.
تکنولوژی line interactive
در این نوع تکنولوژی برق ورودی وارد بخشInterface Power شده و خروجی را تأمین و همزمان عمل شارژ باتری انجام میگیرد.
Inverter در حالت نرمال (برق شهر) وظیفه شارژ باتری و در حالت قطع برق شهر، وظیفه تولید برق سینوسی از انرژی ذخیره شده باتری را بر عهده دارد. (شکل شماره ۱۹) در این حالت همانطور که گفته شد، Inverter عمل شارژ باتری را انجام میدهد. در این نوع تکنولوژی برق ورودی وارد بخشInterface Power شده و خروجی را تأمین و همزمان عمل شارژ باتری انجام میگیرد. برق ورودی وارد ***** شده و ترانس AVR(Automatic Voltage Regulation) عمل تضعیف (Boost) یا افزایش (Buck) برق ورودی را انجام میدهد و با یک رگولاسیون خوب، برق را به بار مصرفی میرساند
این توپولوژی درسایتها ، شبکه وسرورها (تجهیزات( IT بیشترین استفاده را دارد . ، در این طراحی اینورتر همواره روشن و به خروجی یوپی اس متصل است ودر حالت عملکرد عادی وظیفه شارژ باتریها را عهده دار است و زمانیکه توان ورودی از بازه مجاز تعریف شده خارج گردد ، پیوستگی توان خروجی از اینورتر و انرژی ذخیره شده باتریها تامین میگردد.
معمولا جهت فراهم شدن رگولاسیون ولتاژ مناسب در خروجی در این طراحی از ترانسفورمرهای tap changing نیز استفاده میشود.در مقایسه با توپولوژی standby تجهیزات مونیتورینگ بیشتری تعبیه شده و ناپایداری خروجی و نویزهای سوییچینگ نیز کاهش یافته است .
برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.

در مجموع راندمان بالا ، قیمت پایین ، ضریب اطمینان بالا و توانایی اصلاح ولتاژ نامناسب ورودی ، این طراحی را در توانهای ۰٫۵~۵ KVA برتر و غالب می داند .
این نوع یو پی اس شامل دستگاههایی می شود که در آنها سعی شده با اضافه کردن سیستم تنظیم ولتاژ در مسیرBy pass عملکرد بهتری نسبت به سری Off-line ارائه شود . دو نوع از متـداولترین سیستمهای این رده یو پی اس مجهز به ترانس Buck/Boost وترانس ferrorvesonat می باشد.مشابه مدلهای Off-Line یو پی اس مدل Line-Interactive بار خــود را از طـریق مسیرBypass تغذیه می کند وبراثر هر حادثه ای که سبب قطع برق شهر شود آن رابه اینورتر انتقال می دهد. در بخشهای باتری، شارژر و مدار اینورتر نیز با سیستم Off-Line مشابه است اما به خاطر اضـافه شدن مدار تنظیم ولتاژ در مسیر By pass بار کمتر به اینورتر انتقال می یابد. چنین سیستمی تاثیر بیشتری درکاهش هزینه ها داشته و عمر مفید باتری در مقایسه با Off-Line بیشتر می شود.

انواع Line- Interactive
۱- ترانس
Buck/Boost جهت تنظیم ولتاژ در مسیر Bypass اضافه می شود این ترانس با سیم پیچ ثانویه چند سر به همراه چندین رله طوری تنظیم می شود که هر دو سطح پایین و بالای ولتاژ مسیر Bypass را به طور مناسب پوشش داده و بدین طریق ولتاژ خروجی یوپی اس را به اندازه ولتاژ مورد نیاز محدود می کند. این بدین معناست که محدوده ولتاژ قابل قبول ورودی (بدون نیاز به عملکرد اینورتر) افزایش می یابد.یک یو پی اس در این طبقه بندی می تواند با دامنه ولتاژ ورودی بین +%۲۰ تا – %۳۰ فراتر از محدوده ولتاژ نامی و با استفاده از مسیر Bypass ، ولتاژ بار خود را تامین کند.
۲- عملکرد ترانس فرورزنانس نیز شبیه ترانس Buck/Boost می باشد، در این مورد ترانس فرورزنانس جایگزین ترانس Buck/Boost شده است. این ترانس تنظیم و رگولاسیون ولتاژ را در برابر اختلالهایی مانند نویز خط الکتریکی انجام می دهد و به ازای تغییر در ولتاژ ورودی از -%۴۰ تا +%۲۰ خروجی تنها ۳%+ مقدار نامی تغییر خواهد کرد. همچنین این ترانس با ذخیره انرژی، برق مورد نیاز کامپیوترها را در زمان قطع کامل برق برای مدت کوتاهی تامین می کند تا اینورتر شروع به کار کند. بنابریان بدون ایجاد وقفه در جریان برق؛ بار بین مسیرBypass به اینورتر منتقل شده و یوپی اس عملاً به یک سیستم واقعی On-Line تبدیل می شود که در خروجی آن وقفه ای مشاهده نمی شود.
۳- در Bi- directional power converter تنها یک بلوک جایگزینی یکسو کننده (شارژر) و مدار اینورتر می شود، خیلی سریع تغییر حالت داده و به عنوان یک مدار اینورتر عمل می کند. همچنین از این نوع طراحی می توان در مدار Buck/Boost یا در هر کدام از سیستم های مختلف Line-interactive استفاده کرد.
تکنولوژی double conversion
این طراحی از جهاتی مشابه سیستم standby است با این تفاوت که در شرایط عملکرد عادی نیز اینورتر توان خروجی را تامین مینماید . در این طراحی ابتدا توانAC ورودی توسط رکتیفایر به DC و سپس توسط اینورتر، DC به AC تبدیل می گردد و امکان عملکرد دو سویه وجود ندارد .
به هنگام خرابی منبع ورودی ویا خارج شدن توان ورودی از رواداریهای مجاز، نیز اینورتر پیوستگی توان خروجی را با استفاده از انرژی ذخیره شده باتریها تامین مینماید، در این طراحی عملا transfer time نخواهیم داشت .این تکنولوژی مشخصه های کاری ایده آلی را در خروجی (مستقل از تغییرات ولتاژ و سرعت تغییرات فرکانس ورودی ) فراهم می سازد و در توانهای بالاتر از ۱ kVA طراحی و تولید می گردد ، اما به دلیل کارکرد مداوم اینورتر ، فرسایش قطعات و المانهای پاور ، ضریب اطمینان این سیستم کاهش می یابد ، بازده کم و تلفات انرژی و هزینه بالا نیز از دیگر معایب این تکنولوژی است .
در این تکنولوژی برای ساختن خروجی، یکبار تبدیل AC به DC و یک بار تبدیل DC به AC انجام میگیرد به همین علت به این نوع تکنولوژی Double Conversion میگویند. ابتدا ولتاژ ورودی تبدیل به DC میشود تا وابستگی به برق ورودی کاهش یابد و سپس خروجی از این ولتاژ به وجود می آید.
در حالت نرمال، ورودی وارد یک *****، یک مدار Inverter شده و از طریق Static Switch وارد خروجی میشوددر حالت باتری، ورودی از مدار قطع است و باتریها خروجی را تأمین میکنند
– در وضعیت Bypass در این حالت مدارات داخلی یوپیاس حذف و خروجی مستقیما از ورودی تأمین میگردد.
این وضعیت در دو مورد زیر کاربرد دارد:
الف) در زمان تعمیر و یا سرویس دستگاه، نیازی به قطع آن از سیستم برقدهی نمیباشد، یعنی سرویس کار به جای آن که مجبور باشد تا کامپیوتر ها را خاموش نماید، میتواند یوپی اسها را تعمیر نماید .) Bypass به صورت دستی(
ب)در زمان ایجاد Fault (نقص) برای دستگاه یوپی اس مثلا Over Load، Over Head، …) یوپیاس به جای آن که خروجی دستگاه را قطع نماید) خود را به حالت Bypass برده تا از خاموش شدن کامپیوترها جلوگیری نماید Bypass) به صورت اتوماتیک
تکنولوژی delta conversion
واژه دلتا که یک نماد یونانی است به معنای تفاضل یا اختلاف می با شد و نامگذاری تکنولوژی دلتا کانورژن نیز بر اساس بالانس توان خروجی با مقایسه شکل موج ورودی و خروجی در هر نقطه و جبران تفاضل موجود بوسیله کانورترهاست .
این توپولوژی حدود ۱۰ سال پیش جهت مرتفع ساختن معایب تکنولوژی دابل کانورژن طراحی وتولید شده است ،در شرایط عملکرد عادی توان خروجی با همکاری اینورتر اصلی و دلتا اینورتر تامین می گردد .
ودر شرایط خرابی منبع ورودی ، مشابه سیستم دابل کانورژن پیوستگی توان خروجی توسط اینورتر اصلی و با استفاده از انرژی ذخیره شده باتریها حاصل می شود .
در این طراحی کانورترها به صورت دوسویه عمل می کنند یعنی دلتا کانورتر و کانورتر اصلی توانایی تبدیل AC به DC و DC به AC را بطور همزمان دارند.
در طراحی دلتاکانورژن ، دلتاکانورتر یک کانورتر جریان است که دو وظیفه را به عهده دارد. وظیفه اول کنترل مشخصه های توان ورودی است که کشیده شدن جریان بصورت سینوسی و کاهش هارمونیکها و در نتیجه کاهش تلفات گرمایی و استهلاک کمتراز فواید آن می باشد .
دومین وظیفه کنترل و تنظیم جریان ورودی جهت تامین جریان شارژ باتریهاست .
اینورتر(کانورتر) اصلی نیز یک اینورتر ولتاژ با تکنولوژی PWM است که مهمترین وظیفه آن تنظیم و تثبیت ولتاژ در نقطه بالانس توان با تلرانس ۱%± است .
کیفیت خوب مشخصه های توان خروجی و راندمان بالا ، کاهش تلفات ، اصلاح ضریب توان ورودی ، کنترل دینامیکی و سازگاری با ژنراتور نیز از مزایای قابل ملاحظه این تکنولوژی است

سیستم On-Line
اولین تفاوت بین این طرح و آنچه که قبلا در سیستم off-line توضیح داده شد این است که شارژ باتری با بخش”یکسو کننده/شارژر”تعویض شده است.بخش “یکسو کننده /شارژر” ممکن است از دو قسمت جداگانه یا یک بلوک قدرت کامل تشکیل شده باشد.زمانیکه برق شهر در جریان است این بخش باطری را شارژ و انرزی اینورتر را توسط یک ولتاژ dc ثابت تامین می کند.در صورتی که برق ورودی (برق شهر)قطع شود شارژ خاموش شده و انرژی DCاینورتر توسط باتری تامین می شود و از این زمان باتری رفته رفته خالی می شود.این نوع یو پی اس که اصطلاحا یو پی اس Double Conversion نیز نامیده می شود بالاترین میزان حفاظت را ارائه می کند زیرا بار همواره با یک ولتاژ تنظیم شده تغذیه می شود.به عبارت دیگر حتی زمانی که برق شهر وجود دارد یکسو کننده شارژر و بخش های اینورتر فعال هست در حالت عادی هنگامی که بار انرژی خود را دریافت می کند به خوبی در برابر اختلالات برق شهر محافظت می شود.چون یکسو کننده و اینورتر مانند یک سد در برابر نویز موجود در خطوط انتقال برق و نوسانات زودگذر ولتاژ عمل کرده و در نهایت یک ولتاژ خروجی کاملآ تثبیت شده را تامین می کنند.اگـر ولتــاژ ورودی از محدوده مجاز(مثل۱۰%+ تا ۲۰%-) تجاوز کند یا این که کاملآ قطع شود .اینورتر با استفاده از انرزی باتری به کار خود ادامه می دهد انجام این مراحل به نحوی صورت می پذیرد که هیچ وقفه ای به بار منتقل نشود زمانی که انرژی باتری استفاده می شود اینورتر مانند زمان استفاده از برق شهر همان میزان رگولاسیون ولتاز را ارائه می کند و بار از طریق سوئیچ استاتیک به خروجی اینورتر متصل است.
انواع تکنولوژی ساخت
ساختار یو پی اس بهاین ترتیب است که:
برق ورودی وارد یک مبدل (Converter) شده و با رگولاسیون که در خروجی خود انجام میدهد وارد بار مصرفی میشود. یک منبع انرژی باتری هنگام قطع برق، انرژی را تأمین کرده و به منظور محفوظ ماندن انرژی در لحظه سوئیچینگ از برق به باتری و بالعکس از یک خازن استفاده میشودانواع تکنولوژیهای شناخته شده جهت ساخت یوپیاس عبارتند از:
۱-Standby
۲- Line-Interactive
۳- Ferro Resonant
۴- Double Conversion
۵- Delta Conversion
در این قسمت سعی داریم شما را به سه نوع تکنولوژی ساخت یوپیاس آشنا نمائیم:
Ferro Resonant Technology)
درحالت نرمال (برق شهر)، Inverter قطع میباشد و ورودی مستقیما وارد ترانس شده تا خروجی فراهم شود
پارامترهای اصلی جهتخرید یک دستگاه UPS
THD (Total Harmonic Distortion)
وجود بارهایی که از منابع تغذیه سوئیچینگ استفاده میکنند، به دلیل ایجاد هارمونیک در شبکه، باعث داغ شدن سیمهای نول و به تبعه آن باعث بروز گرما در سیستم برق میشوند. بنابراین برای مکانهایی که تعداد دستگاههای کامپیوتری زیادی دارند، توصیه میشود از یوپی اس با THD جریان ورودی پایین مثلا ۱۰% استفاده شود.
Switch Time
عبارت است از فاصله زمانی بین سوئیچ از برق شهر به باتری و بالعکس. هر چه این زمان بیشتر باشد احتمال Restartشدن کامپیوتر در لحظه سوئیچ بیشتر خواهد بود.
دستگاه هایی که زمان سوئیچ آنها حدود صفر است به دستگاه های Online معروف هستند
Backup Time زمان موردنیاز برای وضعیتی است که برق شهر قطع شده و لازم است برای تغذیه بار مصرفی از انرژی ذخیره شده در باتری استفاده شود. این زمان بستگی به باتری دارد و با کم و زیادشدن باتری، کم و زیاد میشود. یو پی اس ممکن است دارای باتری داخلی و یا خارجی (کابینت باتری) باشد.
Noise Filtration *****فیلتراسیون نویز بسته به مکان استفاده تغییر میکند و زمانی که کنترل نویزهای Normal و Common ورودی به سیستم مهم است از آن استفاده میشود.
Audible Noise زمانی که دستگاه روشن است بر اساس صدای ناشی از فن یا ترانس دستگاه میزان نویز صوتی سیستم مشخص میشود.
Size & Weight سایز و حجم دستگاه میتواند بر اساس مکان استفاده متفاوت و در بحث حمل و نقل و یا خدمات مهم باشد
:Interface and Ergonomyشکل ظاهری و تناسب دستگاه با توجه به نوع دستگاه و مکان استفاده، نقش مهمی در انتخاب دستگاه دارد
Robustness and Reliabilityاستحکام و قابلیت اطمینان زیاد در برابر شرایط سخت و بحرانی از مهمترین پارامترهای انتخاب یوپیاس مناسب می باشد
Technology & Wave Shapeیکی از پارامترهای مهم در انتخاب یو پیاس مناسب، تکنولوژی ساخت آن میباشد که توضیحات آنها در ادامه آمده است.
چنانچه منابع تغذیه دستگاههای مورد استفاده بسیار حساس بوده و هیچگونه نویز یا اعوجاجی نباید به آن وارد شود و شکل موج خروجی به صورت سینوسی کامل و بدون قطعی و بدون وابستگی به ولتاژ ورودی لازم باشد، توصیه میشود از یوپیاسهای Online استفاده شود و چنانچه ورود نویز یا تغییر شکل موج خروجی سیستم از درجه اهمیت کمتری برخوردار است، یو پیاسهای Line-Interactive توصیه میشود
:Rated VAتوان نامی دستگاه پارامتری است که از دو راه میتوان مقدار آن را محاسبه و سپس دستگاه مناسب را خریداری نمود.
روش اول: مجموع مقادیر توان دستگاههای مصرفی بر حسب وات را محاسبه نموده و بر ۰٫۶ تقسیم مینماییم. عدد به دست آمده، مقدار توان مصرفی میباشد.
روش دوم: مقدار کل جریان را به دست آورده و آن را در ۲۲۰ ضرب نموده تا مقدار توان مصرفی به دست آید.
عددبه دست آمده از روش ۱ یا ۲ را با توجه به رنج تولیدی یوپیاسهاچک کرده و یوپیاس موردنظر را بیابید.
برای مثال من میخواهم برای کامپیوتر خود، یوپیاسای را انتخاب نمایم. ابتدا از پشت Power کامپیوتر، مشخصات مانیتور و یا تجهیزات دیگر، واتهای مربوطه را با هم جمع میکنم، که برای مثال عدد ۲۵۰W به دست میآید. حال بر ۰٫۶ تقسیم میکنیم تا عدد ۴۱۶٫۶ به دست آید. بنابراین یوپیاس مورد انتخاب من میبایست ۴۱۶٫۵VA خروجی داشته باشد تا در حالت Full Load کار کند. پیشنهاد میشود که مقدار بار متصل به یوپیاس نهایتا ۷۰% از توان خروجی یوپیاس باشد،
Input Voltage Range
میزان تغییرات ولتاژ ورودی یوپیاس میباشد. مثلا دستگاه یوپیاس که بازه ولتاژ ورودی آن ۱۴۸-۲۷۰ VAC میباشد، بدان معناست که یوپی اس بین ولتاژ ۱۴۸ تا ۲۷۰ ولت برق شهر بدون استفاده از باتری و با در اختیار گرفتن رگلاسیون داخلی به کار خود ادامه داده و ولتاژ خروجی مناسبی را ارائه میدهد
Input Frequency Range
میزان تغییرات فرکانس ورودی یوپیاس میباشد. مثلا دستگاه یوپیاس که بازه فرکانس ورودی آن ۵۰ Hz ± ۵% میباشد، بدان معناست که یوپی اس در بازه فرکانسی ۴۷٫۵ تا ۵۲٫۵ هرتز بدون استفاده از باتری و با در اختیار گرفتن رگلاسیون داخلی به کار خود ادامه داده و ولتاژ خروجی مناسبی را ارائه میدهد. یوپیاس در خارج از این بازه، ورودی یوپیاس را غیرنرمال تشخیص داده و به حالت Backup درآمده و ولتاژ خروجی را از باتری تأمین مینماید
Output Voltage Range بازه ولتاز خروجی یوپیاس که مقدار آن با بازه ولتاژ ورودی دستگاههای مصرفی میبایست هماهنگ باشد
Output Frequency Rangeبازه فرکانس خروجی یوپیاس که مقدار آن با بازه فرکانس ورودی دستگاههای مصرفی میبایست هماهنگ باشد
Efficiency – Normal Mode
Backup Regulation: مقدار توان خروجی دستگاه یوپیاس با توجه به مقدار توان ورودی دستگاه تحت عنوان Efficiency مطرح بوده که این عدد معمولا ۱۰۰% نیست، زیرا مقداری از توان ورودی توسط خود یوپیاس مصرف می شود.
میزان راندمان و کارایی دستگاه بنا به نوع تکنولوژی ساخت متفاوت و به خصوص در حالت باتری به علت تغذیه از باتری ها از اهمیت ویژه برخوردار است،
Efficiency در دستگاههای Line-Interactive بین %۸۰-۷۰ و در دستگاههای Online بیشتر از %۸۰ میباشد
از جمله مشخصات یک یو پی اس مناسب:
۱) سیستم حفاظتی:
• حفاظت در مقابل رعد و برق و افزایش ناگهانی ولتاژ برق
• حفاظت در مقابل برگشت ولتاژ روی دوشاخه ورودی در حالت استفاده از باتری
• حفاظت در مقابل دو فاز شدن برق ورودی
• حفاظت از دستگاههای مصرف کننده در مقابل تغییرات ولتاژ خروجی خارج از محدوده مجاز
• حفاظت در مقابل تغییرات ولتاژ و فرکانس برق ورودی
• حفاظت در مقابل افزایش بیش از حد مجاز دمای داخل دستگاه
• حفاظت در مقابل نویز های Common Mode موجود در برق شهر
• حفاظت در مقابل اضافه بار و اتصال کوتاه در خروجی
• حفاظت در مقابل اتصال معکوس باتری
• حفاظت در مقابل اتصال کوتاه شارژر
• حفاظت در مقابل اتصال کوتاه باتری
• حفاظت در مقابل تخلیه غیر مجاز باتری
• حفاظت در مقابل ولتاژ بالاتر از حد مجاز شارژ باتری
• حفاظت از خط تلفن/فکس/مودم/شبکه
۲) سیستم هشدار دهندهنوری و صوتی:
• تامین برق خروجی از باتری
• تامین برق خروجی از برق شهر
• نمایشگر ظرفیت باتری
• اضافه بار و اتصال کوتاه
• نمایشگر میزان توان مصرفی
• تضعیف باتری
• ولتاژ و یا فرکانس ورودی خارج از محدوده مجاز
• ولتاژ بالاتر از حد مجاز شارژ باتری
• خراب بودن باتری
• حالت خطا
• افزایش دمای داخلی دستگاه
• برق ورودی نرمال
• تامین برق خروجی از طریق سوئیچ Bypass
• عدم اتصال به ارت مناسب
برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.
__________________
تواننامی : از دو راه می توان توان نامی را برای UPS را محاسبه نمود
روش اول : توان مصرفی تک تک دستگاهها را برحسب وات محاسبه نموده و با هم جمع نموده و بر ضریب توان خروجی یو پی اس تقسیم نموده توان دستگاه یو پی اس بر حسب ولت-آمپر بدست می آید.
روش دوم : جریان مصرفی کل دستگاهها را اندازه گرفته در ۲۲۰ ضرب می نما ییم توان یو پی اس بر حسب ولت-آمپر بدست می آید.
البته بهتر است که مقدار بار متصل به یو پی اس نهایتا ۷۰% از توان خروجی یو پی اس باشد تا در بارهای لحظه ای و کلید زنی که جریان لحظه ای دارند فشار کمتری به یو پی اس وارد شود.
رنج تغیرات ولتاژ و فرکانس ورودی:میزان تغیرات ولتاژ ورودی و فرکانس بدان معنی است که بازه ولتاژ ورودی و فرکانس( مثلآ
۱۶۰~۲۸۰ vae ولتاژ و فرکانس از ۴۵~۶۵ ) اگر در ورودی (برق شهر) تغییر نماید یو پی اس بدون استفاده از باتری و با استفاده از رگلاسیون داخلی به کار خود ادامه داده و ولتاژ خروجی مناسبی را ارائه دهد .در صورتی که یو پی اس خارج از این بازه باشد ،یو پی اس به حالت Backup رفته و ورودی را قطع می نماید و از باتری استفاده می کند تا مجددا به حالت نرمال برگردد.رنج ولتاژ خروجی و فرکانس خروجی و رگولاسیون (بازه ولتاژ و فرکانس خروجی یو پی اس) آن باید با بازه ولتاژ ورودی دستگاههای مصرفی وصل به یو پی اس هماهنگ باشد ،در یو پی اس ها ی online رگولاسیون ولتاژ کمتر از ۲%+ و فرکانس کمتر از۰٫۵%+ در یو پی اس ها ی off_line و line_Interactive رگولاسیون ولتاژ ۱۰%+ تا ۳%+ وفرکانس بین ۵/۲% تا ۵/۰% می باشد.
چگونه زمان برق دهی(Back Up) را برایباتری ها محاسبه کنیم؟زمان Back up مدت زمانی است که باتری باید انرژی و توان مورد نیاز بار را تامین نماید و اغلب به آن زمان استقلال (Autonomy) یا زمان دشارژ نیز گفته می شود .
باتریها درانواع گوناگون و میزان آمپرساعت متفاوت عرضه می شوند ، بنابراین به منظور نصب باتری مناسب و استفاده ازآن باید محاسبه دقیقی انجام گیرد.
درانتخاب باتری با ظرفیت یا سرویس دهی مناسب حداقل به دو نکته باید توجه شود .
۱٫ بار باتری ۲٫ زمان استقلال یاBack up موردنیاز
ابتدا جریان کشیده شده از باتری را محاسبه می کنیم . به عنوان مثال :
اگر بار متصل به یو پی اس ۵KVA و ضریب توان آن ۰٫۸ باشد بار یو پی اس ۴kw است . اگر راندمان اینورتر یو پی اس ۹۰% بــاشد تلفـات اینــورتـر۳۶/ kw0 است . بنــابراین بــرای تغـذیه بار باتری باید به انــدازه Kw 4.36= 0.36 KW + 4KW توان ((dc تولید کند.
حال اگر ولتاژ ثابت باتری ۱۹۲ ولت باشد و زمان Back up ، ۳۰ دقیقه باشد . ابتدا جریان dc را محاسبه می کنیم که جریان ۲۲٫۷۱خواهد شد .
توجه : محاسبه فوق به شکل ساده در این جا آمده است زیرا ولتاژ واقعی باتری با دشارژشدن آن افت می کند .
سازندگان باتری همیشه جداول یا نمودارهایی را عرضه می کنند که با استفاده از اطلاعات آنها می توان ظرفیت سرویس دهی موردنیاز را تعیین کرد.
انواع باتری های قابل استفاده در UPS کدامند؟
انواع باتری شامل : سرب اسید ، نیکل کادمیم ، لیتیوم و سیلور آلکالین می باشند.
مناسبترین نوع باتری برای UPS نوع سرب اسید (lead – acid) می باشد و بیشتر با درپوش کاملا بسته که نیاز به سرویس و نگهداری ندارد و با ولتاژ ۱۲V استفاده می گردد . البته در آمپر ساعت بالا از ۲ ولتی استفاده می گردد در جاهایی که نیاز به طول عمربالاتر از۱۰ سال باشد . معمولا از نیکل کادمیم استفاده می گردد.
در صورتی که بخواهیم UPS باژنراتور سنکرون گردد چه نکاتی را باید رعایت نماییم؟
گاهی اوقات در ایجاد هماهنگی بین ژنراتورو سیستم یو پی اس مشکلاتی به وجود می آید ولتاژ خروجی ژنراتور ممکن است به عنوان ورودی یو پی اس قابل قبول باشد اما غالبا محدوده فرکانس خروجی ژنراتورفراتر از مقداری است که یو پی اس برای پذیرش آن طراحی شده است . دربدترین حالت تغییرات فرکانس درژنراتور به گونه ای خواهد بود که یوپی اس نمی تواند با آن ستکرون شود چون یا فرکانس خارج از محدوده مجاز است یا تغییرات بسیار سریع دارد به طوری که یو پی اس نمی تواند با این تغییرات هماهنگ شود .
این مشکل به دو طریق قابل حل می باشد ابتدا اینکه کارخانه سازنده ژنراتور با توجه به اینکه دستگاه آنها در آینده ممکن است یک یو پی اس را تغذیه کند آن را طوری طراحی نماید که ژنراتور درتلرانس دقیقتر کار کند . دوم از یو پی اس هایی استفاده نماییم که بتواند تغییرات فرکانس در ژنراتور را قبول کند . البته تا زمانی که ولتاژ خروجی ژنراتور مناسب و با حداقل تغییرات باشد . ( معمولا یو پی اس های on-line بهتر از دیگر یو پی اس قابل سنکرون شدن با ژنراتور هستند)
در انتخاب باتری با طول عمر موردنیاز چه نکاتی راباید رعایت کرد؟
باتریها با طول عمر متفاوت تولید می گردند معمولا باتریهای نیکل کادمیوم دارای طول عمرزیاد می باشند ، در صورتی که سرویس و نگهداری آن درست صورت گیرد، ولی چون دارای قیمت بالامی باشد معمولا کمتراستفاده می گردد ، باطریهای سرب – اسید با درپوشی باز (تر) دارای قیمت کمتر با طول عمر متوسط بوده و نیاز به سرویس و نگهداری دارد ، بهترین باتری با قیمت مناسب نوع سیلد اسید ( سرب-اسید با درپوشی بسته ) می باشد ، اولا نیاز به سرویس و نگهداری ندارد . دوما دارای طول عمر ۴ سال به بالامی باشد ، البته امروز این باتریها با طول عمر بالای ۱۰ سال نیز تولید می گردد . بنابراین در هنگام انتخاب باتریها باید به نکات بالا توجه گردد . همچنین به این موضوع نیز توجه شود که بعضی از یو پی اس ها همه باتریها را برای اتصال به آنها نمی پذیرند که سازنده آنها معمولا نوع باتری قابل اتصال به آنها را ذکر می کند.
UPS یو پی اسکدام کشورها دارای کیفیت بالا می باشد؟(سازندگان کدام کشورها از معروفیت برخوردارند؟)
امروزه خیلی از کشورها UPS تولید می کنند و روز به روز به این تولید کنندگان نیز افزوده می گردد ، البته در ایران امروزه بیشتر شرکتها واردکننده UPSیو پی اس هستند تا تولید کننده و تعداد معدودی تولید کنندهیو پی اس UPS هستند.
بیشتر UPS یو پی اسهای وارداتی نیز متعلق به شرکت های چینی می باشد که دارای کیفیت های متفاوتی است، روی هم رفته در حال حاضر یو پی اسUPS های کشورهای اروپای غربی از جمله ایتالیا و فرانسه دارای کیفیت بالاتری از دیگر کشورها می باشند .
امروزه UPS یو پی اسهای توان پایین با قیمت کم متعلق به کشورهای آسیای شرقی از جمله چین می باشد و UPSیو پی اس های با توان بالاتر از ۱۰۰KVA خیلی کم در شرکت های چینی تولید می شود در حالی که UPS یو پی اسهای با توان بالای ۱۰۰KVA تا ۸۰۰KVA بیشتر در کشورهای اروپای غربی تولید می شود که دارای کیفیت بالا می باشد . بنابراین در صورت نیاز به کیفیت بالا با IP بالا؛ باید در کشورهای اروپای غربی به دنبال آن گشت .
باتری های کدام کشورها معروف بوده و علت آنچیست؟
باتریها(مخصوصا باتریهای خشک سیلد اسید )با طول عمرهای متفاوت تولید می شود. بیشتر باتریهایی که با طول عمر پایین تولید می شود؛ متعلق به کشورهای آسیایی از جمله چین می باشد ،کمتر باتری با طول عمر بالای ۵ سال تولید می شود و اگر تولید می گردد معمولا کمتر به کشور ایران وارد می شود(به دلیل نبود مشتری) در حالی که باتری ها با طول عمر بالای ۱۰ سال بیشتر در کشورهای آمریکایی و اروپایی تولید می گردد و باتری ها با طول عمر ۵ تا ۸ سال نیز در کشور کره تولید می گردد،بنا براین در صورتی که باتری با طول عمر بالای۱۰سال می خواهید بهتر است باطری اروپایی خریداری نمایید و در صورتی که باتری ارزان قیمت بخــواهید باتری چینی خریداری نمایید و اگر متوسط طول عمر و قیمت را می خواهید می توانید از باتری های کره ای استفاده نمایید.
قبل از نصب چه موارد ایمنی باید رعایت گردد .
۱٫ طریقه حمل و قرارگیری برای سالم رساندن یو پی اسUPS به مکان نصب
۲٫ اندازه و وزن ، آیا محل نصب فضای کافی برای نصب UPSیو پی اس و کف آن تحمل وزن UPS یو پی اسرا دارد
۳٫ انتخاب مکان نصب مناسب ( برای بالا بردن طول عمر UPSیو پی اس و باتری)
۴٫ شرایط محیطی ( حرارت ، رطوبت و نویز صوتی محل نصب )
۵٫ نصب الکتریکی ( نوع اتصالات ، مقطع کابلهای ورودی و خروجی ، فیوزهای حفاظتی و غیره )
۶٫ اتصال بار به یو پی اس ( فاز و نول بارها مستقیما به یو پی اس و تابلوی UPS وصل گردد ودر بین راه بابرق شهر اتصال نداشته باشد ، توزیع بار بین فازها در صورت سه فاز بودن و غیره …)
۷٫ اتصال زمین ( ارت ، برای برطرف کردن نویز و حفاظت دستگاههای برقی و یو پی اس )
۸٫ بررسی عملیات نصب ( بررسی نصب و راه اندازی بدون خطا و اشکال )
محل مناسب برای UPS و باتری باید دارای چه ویژگی هاییباشد؟
۱٫ فضای موجود کافی باشد .
۲٫ سطح زمین توان تحمل وزن دستگاه را دارا باشد.
۳٫ نصب دستگاه باعث ایجاد مزاحمت برای کارکنان یا اختلال در کارها نشود.
۴٫ شرایط محیطی مکان انتخابی مناسب باشد (حرارت ایده آل برای باتری ۲۰◦C تا ۲۵◦C و حرارت کارکرد UPS 0 – ۴۰ ◦C می باشد و رطوبت بین ۹۰% – ۲۰% باشد نویز محیط زیاد نباشد که روی کارکرد یو پی اسUPS تاثیر بگذارد
۵٫ تجهیزات ایمنی جهت دسترسی آسان به یو پی اس فراهم باشد.
۶٫ نصب یو پی اس نباید برجریان هوا و شرایط محیطی تجهیزات تاثیری بگذارد .
۷٫ سعی شود کلیدها و ابزار سوئیچ و کنترل یو پی اس در یک مکان باشد .
۸٫ در محل انتخاب شده برای نصب یو پی اس؛جای امنی برای تعبیه باتری وجود داشته باشد .
مشخصات برق ورودی دستگاه چگونه باید باشد وچه نکات ایمنی باید رعایت گردد؟
۱٫ از فازهایی استفاده نمایید که بارهایی با جریان لحظه ای بالا روی آن نباشد که هر بار با وارد شدن این بارها ولتاژ از حد متعارف افت ننماید .
۲٫ از فیوز جداگانه در تابلو برق شهر برای UPSیو پی اساستفاده نمایید .
۳٫ فیوز ورودی یو پی اس را با توجه به ماکزیمم جریان ورود با ضریب ۲/۱ انتخاب نمایید.
۴٫ در صورتی که یو پی اس سه فاز می باشد ترتیب فازها رعایت گردد .
۵٫ فرکانس برق ورودی از محدوده مجاز خارج نباشد .
۶٫ ولتاژ ورودی از حد مجاز خارج نباشد .
مشخصات خروجییو پی اس UPS چیست و چه وسایلی می توان به آنوصل نمود؟
مشخصات خروجی هر UPSیو پی اس با توجه به مشخصات فنی دستگاه مشخص می گردد که شامل :
۱٫ توان ، ضریب توان؛ ولتاژ ، فرکانس ، ظرفیت تحمل اضافه بار و THD خروجی و غیره
۲٫ توان هر دستگاه، که مشخص می باشد زیرا با توجه به سفارش شما تعیین می گردد .
۳٫ ضــریب توان خروجی، که بهتر است بالاتر از ۰٫۸ باشد که ضریب توان اکتیو (وات خروجی را مشخص می کند.)
۴٫ ولتاژ خروجی که بازه ولتاژ خروجی با تلرانس خروجی آن مشخص می شود. مثلا : ۲۲۰ +/-۲۰%
چه وسایلی را نمیتوان به UPSیو پی اس وصل نمود؟
یو پی اس معمولا دستگاهی انعطاف پذیر است ، اما نوع خاصی از بارها هستند که نباید آنها را به روش متدوال به یو پی اس وصل نمود ، این بارها عبارتند از :
۱٫ لامپهای فلورسنت یا لامپهای گازی
۲٫ موتورها و کمپرسورها
۳٫ دستگهاههای تهویه مطبوع
۴٫ پرینترهای لیزری
هریک از این دستگاهها درحین کارکردن عادی و یا در لحظه روشن شدن ، جریان زیادی از منبع تغذیه خود می کشند جریان زیاد یو پی اس را به حالت اضافه بار می برد ، در نتیجه ولتاژ خروجی یو پی اس قطعاکاهش خواهد یافت و این امر سبب آسیب دیدن سایر قطعات و تجهیزات حساس می گردد مثلآ جریان راه اندازی موتورها معمولا بین ۴ تا ۱۰ برابر مقدار نامی آن می باشد.
در صورتی که بخواهیم از یو پی اس برای حفاظت از بارهایی با جــریان لحظه ای زیاد مــانند پرینتر های لیزری و موتورها استفاده کنیم ،یو پی اس مورد نظر باید از مشخصات الکتریکی قویتری برخوردار باشد.
چه مواردی در UPS یو پی اسباید مرتب بازبینی شود؟
در ups یو پی اسها به صورت دوره ای باید مواردی مرتب چک گردد که آنها شامل ولتاژ و فرکانس ورودی و خروجی ، توان مصرفی ups ، دمای محیط و دمای داخلی ups یو پی اس، مسیرهای تهویه و فنهای داخلی یو پی اسups ، جریان شارژ باتریها؛ با قطع ورودی یو پی اسups و اطمینان از سالم بودن کلیه باتریها در هنگام back up ، اطمینان از سالم بودن کلیه کلیدهای ورودی و خروجی و غیره …………
عوامل موثر در افزایش طول عمر UPSیو پی اس و باتریچیست؟
انواع مختلف یو پی اس و سیستمهای گوناگون وابسته به آنها و باتریها به منظور اطمینان از داشتن مساعدترین وضعیت کاری به سرویس و نگهداری دوره ای و به خصوص تعویض برخی قطعات نیازدارند . بنابراین برای اطمینان از این که دستگاه در طول عمر مفید خود در بهترین شرایط کاری نگهداری شود نیاز به سرویس و نگهداری به صورت برنامه ریزی شده دارد و همچنین تعویض قطعات در پایان عمر مفید آنها که این باعث افزایش طول عمر سیستم می گردد . ( در مورد شرایط سرویس و نگهداری به سئوال یک و دو مراجعه کنید)
انواع رابط کامپیوتری و نرم افزار در UPS یو پی اسکدام است؟
یو پی اس های جدید مجهز به امکاناتی برای اعلام وضعیت وطرز کار خود به مراکز کنترل سیستم و دستگاههای حساس می باشند . در ساده ترین حالت این گونه اطلاعات به وسیله کنتاکتهای بدون پتانسیل منتقل می شوند در مراحل پیشرفته تر تبادل اطلاعات از طریق پورت سریال RS – ۲۳۲ و USB انجام می شود با استفاده از کارت SNMP و ارتباط سریال آن اطلاعات بیشتری با سرعت بالاتر به شبکه کامپیوتری ارسال می گردد و بدین روش اطلاعات بررسی شده درصورت نیاز سیستم؛اطلاعات از طریق شبکه ارسال می شود .
به دلیل اینکه هر کدام از کارخانه های سازنده یو پی اس یک پروتکل RS – ۲۳۲ مخصوص به خود را بکار می برند . نرم افزارهای shutdown و سایر تجهیزات آنها که در سیستم نصب می شوند . ( به عنوان مثال windows nt و کارت AS400) از کنتاکتهای بـدون پتانسیل به عنـوان نشاندهنده وضعیت یـو پی اس استفاده می کنند .
متاسفانه در اروپا استاندارد معینی برای پروتکل RS – ۲۳۲ وجود ندارد ، بنابراین هرکدام از سازندگان یو پی اس پروتکل مخصوص خود را بکار می برند . به همین دلیل خریداران یو پی اس باید نرم افزار مناسب جهت ارتباط به یو پی اس توسط RS -232 را از سازندگان با فروشندگان مجاز یو پی اس دریافت کنند .
این نرم افزار های کنترلی با سیستم عاملهای کامپیوتر سازگاری دارد و معمولا دارای امکانات زیر است :
۱٫ نمـایش گرافیکی وضعیت یو پی اس ، ولتاژ ، جریان ، درصد بار ، ولتاژ باتری و فـرکانس مـربوط به آن
۲٫ داشتن قابلیت برنــامه ریزی در برابر وضعیتهای به خصوص بروز خطا در سیستم؛ و اعـلام این آلارمها به کاربران
۳٫ داشتن یک جدول زمان بندی برای آزمایش سیستم با انجام برخی وظایف دستگاه و ثبت همه اطلاعات
کارت SNMP چیست وچه ویژگی هاییدارد؟
کارت SNMP یو پی اس را مستقیما به شبکه کامپیوتری وصل می کند ، به صورتی که یو پی اس به یکی از دستگاههای متصل به شبکه تبدیل می شود .
معمولا کارت SNMP بین پورت ارتباطی سریال یو پی اس و شبکه کامپیوتری قرار می گیرد . اگرچه کارتهای موجود در بازار می توانند به عنوان رابط بین کنتاکتهای بدون پتانسیل یو پی اس و شبکه نیز در نظر گرفته شوند . این کارتها اطلاعات حاصل از کنتاکتها را به فرم مناسبی تبدیل می کنند تا توسط سایر دستگاههای شبکه نیز قابل دریافت باشند .
آیا امکان تنظیم پارامترهای UPS وجود دارد؟
لازم به ذکر است که در بعضی از یو پی اسUPS ها امکان تنظیم ولتاژ خروجی ، ولتاژ باتری و ولتــاژ مسیر by pass به صورت نرم افزاری و از روی پنل جلوی یو پی اس امکان پذیر می باشد و در بیشتر یو پی اسUPS ها این تنظیمات ممکن است توسط پتانسیومتر و از روی بردهای کنترولر و یا به صورت سخت افزاری با تعویض یک سری قطعات امکان پذیر می باشد که در مورد دوم معمولا این کار توسط سازندگان و یا تکنسین های مجرب صورت می گیرد و بهتر است توسط خریداران به هچ عنوان صورت نگیرد

UPS Management Software
یکی از معیارهای مهم جهت خرید یوپی اس، بررسی بحث مدیریت آن توسط نرم افزار مرتبط با یو پیاس میباشد. مانیتورینگ و کنترلینگ یوپیاس حتی به صورت Remote)) مکانیزم Auto Saving فایلها در زمانهای بحرانی، کاربرپسند بودن و پشتیبانی آن از سیستمعاملهای مختلف از جمله مهمترین ویژگیهای یک نرم افزار مدیریت یوپیاس میباشد.
باتری خشک
یکی دیگر از عوامل مهم انتخاب UPSیو پی اس در حال حاضر برای کاربران غیر حرفه ای ونیمه حرفه ای وجود باتری خشک دریو پی اس UPS است . این باتری به کاربر این امکان را می دهد تا بتواند در زمان قطع برق نیز از سیستم خود استفاده کند
Permanent link to this article: https://peg-co.com/home/%db%8c%d9%88-%d9%be%db%8c-%d8%a7%d8%b3%d9%85%d9%86%d8%a8%d8%b9-%d8%aa%d8%ba%d8%b0%db%8c%d9%87-%d8%a8%d8%af%d9%88%d9%86-%d9%88%d9%82%d9%81%d9%87/




Permanent link to this article: https://peg-co.com/home/2-3/










Permanent link to this article: https://peg-co.com/home/%db%8c%d9%88-%d9%be%db%8c-%d8%a7%d8%b3-%d8%b7%d8%b1%d8%a7%d8%ad%db%8c/







منبع: ekahroba.ir
Permanent link to this article: https://peg-co.com/home/gim-%d9%be%d9%88%d8%af%d8%b1-%da%a9%d8%a7%d9%87%d9%86%d8%af%d9%87-%d9%85%d9%82%d8%a7%d9%88%d9%85%d8%aa-%d8%a7%d9%87%d9%85%db%8c-%d8%ae%d8%a7%da%a9/



Permanent link to this article: https://peg-co.com/home/%db%8c%d9%88-%d9%be%db%8c-%d8%a7%d8%b3-%d8%ae%d8%a7%d9%86%da%af%db%8c/

IEC 62305 Part 1 |
استاندارد بین المللی مربوط به طراحی و اجرای سیستم حفاظت در برابر صاعقه بخش اول – اصول کلیProtection Against Lightning – Part 1 : General Principles |
|
۲ |
IEC 62305 Part 2 |
استاندارد بین المللی مربوط به طراحی و اجرای سیستم حفاظت در برابر صاعقه بخش دوم – مدیریت ریسکProtection Against Lightning – Part 2: Risk Management |
۳ |
IEC 62305 Part 3 |
استاندارد بین المللی مربوط به طراحی و اجرای سیستم حفاظت در برابر صاعقه بخش سوم – جلوگیری از خسارت های فیزیکی به ساختمان ها و خطرات جانی ناشی از صاعقهProtection Against Lightning – Part 3: Physical Damage To Structures and Life Hazard |
۴ |
IEC 62305 Part 4 |
استاندارد بین المللی مربوط به طراحی و اجرای سیستم حفاظت در برابر صاعقه بخش چهارم – جلوگیری از بروز خسارات به تجهیزات الکتریکی و الکترونیکی داخل ساختمان Protection Against Lightning – Part 4: Electrical and Electronic Systems Within Structures |
۵ |
NFC17 102 -2011 |
استاندارد فرانسوی مربوط به طراحی، اجرا و تست صاعقه گیر اکترونیکی Protection Against Lightning – ESE Lightning Protection Systems |
۶ |
IEC 62561 Part 1 |
استاندارد بین المللی مربوط به ساخت و تست اتصالات سیستم حفاظت در برابر صاعقه – صاعقه گیرLightning Protection System Components – Part 1: Requirements For Connection Components |
۷ |
IEC 62561 Part 2 |
استاندارد بین المللی مربوط به ساخت و تست الکترود های ارت و هادی های سیستم حفاظت در برابر صاعقه – صاعقه گیرLightning Protection System Components – Part 2: Requirements For Conductors and Earth Electrodes |
۸ |
IEC 62561 Part 3 |
استاندارد بین المللی مربوط به ساخت و تست اسپارک گپ ایزوله کننده Lightning Protection System Components – Part 3: Requirements For Isolating Spark Gaps |
۹ |
IEC 62561 Part 4 |
استاندارد بین المللی مربوط به ساخت و تست بست های اتصال هادی هاLightning Protection System Components – Part 4: Requirements For Conductor Fasteners |
۱۰ |
IEC 62561 Part 5 |
استاندارد بین المللی مربوط به ساخت و تست دریچه های بازرسی الکترود های ارتLightning Protection System Components – Part 5: Requirements For Earth Electrode Inspection Housings and Earth Electrode Seals |
۱۱ |
IEC 62561 Part 6 |
استاندارد بین المللی مربوط به ساخت و تست شمارنده / کنتور صاعقه گیرLightning Protection System Components – Part 6: Requirements For Lightning Strike Counters |
۱۲ |
IEC 62561 Part 7 |
استاندارد بین المللی مربوط به ساخت و تست مواد کاهنده مقاومت الکتریکی زمینLightning Protection System Components – Part 7: Requirements For Earthing Enhancing Compounds |
۱۳ |
NFPA 780-2008 |
استاندارد آمریکایی مربوط به طراحی و اجرای سیستم حفاظت در برابر صاعقه – صاعقه گیرStandard for the Installation of Lightning Protection Systems |
۱۴ |
UL 467 |
استاندارد آمریکا مربوط به ساخت و تست تجهیزات ارتینگ و همبندیGrounding and Bonding Equipments |
۱۵ |
BS 7430-2011 |
استاندارد انگلستان مربوط به سیستم ارتینگ حفاظتی تاسیسات الکتریکیCode Of Practice For Protective Earthing Of Electrical Installations |
۱۶ |
IEEE 837 |
استاندارد آمریکا مربوط به اتصلات دائمی در سیستم ارتینک پست های برقStandard for Qualifying Permanent Connections Used in Substation Grounding |
۱۷ |
IEEE 80 |
استاندارد آمریکا مربوط به طراحی و اجرای سیستم ارتینگ پستهای برق جریان متناوبGuide for Safety In AC |
Permanent link to this article: https://peg-co.com/home/%d8%a7%d8%b3%d8%aa%d8%a7%d9%86%d8%af%d8%a7%d8%b1%d8%af-%d9%87%d8%a7%db%8c-%d8%b3%db%8c%d8%b3%d8%aa%d9%85-%d8%a7%d8%b1%d8%aa-%d9%88-%d8%b5%d8%a7%d8%b9%d9%82%d9%87-%da%af%db%8c%d8%b1/

صاعقه گیر با تکنولوژی پدیده پیزو الکتریک (اثر فشاربرقی)
یکی از ویژگیهای غیرمعمولی که برخی سرامیکها از خود بروز میدهند، پدیدهٔ پیزوالکتریک یا اثر فشاربرقی است. با اعمال نیروی خارجی، دوقطبیهای این سرامیکها تحریک میشوند و میدان الکتریکی ایجاد میشود. وارون کردن اثر نیرو (مثلاً از کششی به فشاری) جهت میدان را معکوس میکند.
از مواد پیزوالکتریک در مبدلها و وسایلی که انرژی الکتریکی را به انرژی مکانیکی تبدیل میکنند یا برعکس استفاده میشود. کاربردهای نامآشنایی از جمله پیکاپ گرامافون، میکروفونها، مولدهای ماوراء صوت و حسگرهای سونار از خاصیت پیزوالکتریک استفاده میکنند. در پیکاپ گرامافون همچنان که قلم شیارهای رکورد را میپیماید یک اختلاف فشار به مادهٔ پیزوالکتریک موجود در پیکاپ وارد میشود که نهایتاً به سیگنال الکتریکی تبدیل میشود. این سیگنال قبل از ورود به بلندگو تقویت میشود. خاصیت پیزوالکتریک یک ویژگی مواد کریستالی دارای ساختار پیچیدهٔ بدون تقارن است. رفتار پیزوالکتریک یک پلیکریستال بوسیلهٔ گرم کردن بالاتر از دمای کوری و سپس خنک کردن تا دمای اتاق در مجاورت میدان الکتریکی قوی بهبود مییابد.

اثر پیزوالکتریک توانایی برخی مواد میباشد برای تبدیل انرژی مکانیکی به انرژی الکتریکی و تبدیل انرژی الکتریکی به انرژی مکانیکی. این اثر را برادران کوری، پییر و ژاک کوری، در دههٔ ۱۸۸۰ کشف کردند. موادی که این پدیده را از خود بروز میدهند مواد پیزوالکتریک نامیده میشوند. اثر پیزوالکتریک در انواع بسیاری از مواد از جمله تک بلورها، سرامیکها، بسپارها و مواد مرکب دیده میشود. تولید اختلاف پتانسیل الکتریکی در برخی بلورهای نارسانا مثل کوارتز تحت کشش یا فشار معکوس هماند و هر چه میزان فشار یا کشش بیشتر باشد، اختلاف پتانسیل تولید شده بیشتر است. اثر پیزوالکتریک معکوس به معنی تغییر شکل آنها بر اثر اعمال اختلاف پتانسیل الکتریکی است. اگر دو وجه روبرویی در هر یک از این بلورها را به اختلاف پتانسیل متناوب الکتریکی وصل کنیم، تغییر شکل متناوبی در آن رخ میدهد و به ارتعاش در میآید.
پیزوالکتریک بار الکتریکیای است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (به ویژه در کریستالها، بعضی سرامیکها و مواد آلی مانند استخوان، DNA و پروتئینهای مختلف). واژه پیزوالکتریک یعنی الکتریسیتهٔ ناشی از فشار که از لغت یونانی پیزو به معنای فشردن و الکترون به معنی کهرباگرفته شده است.
اثر پیزوالکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود.
اثر پیزوالکتریک یک فرایند برگشتپذیر است؛ موادی که به طور مستقیم اثر پیزوالکتریک (تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس (تولید داخلی نیروی مکانیکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند.
به عنوان مثال سرامیکهای PZT (Pb[ZrxTi1-x]O۳ ۰≤x≤۱) اگر به اندازه ۰٫۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰٫۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الکترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن پرتوهای نور در مقیاس بسیار بزرگ. این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA SNOM و… همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگار.

اثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط کارل لینائوس[و ۱] و فرنز آپینوس[و ۲] مطالعه شد و با الهام از این موضوع رنه جاست هاووی[و ۳] و آنتونی سزار بکورل[و ۴] ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایشهای آنها نتیجهٔ قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران پیری کیوری[و ۵] و جکوئیز کیوری[و ۶] انجام شد. آنها دانششان را از پیروالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای ترمالین، کوارتز، زبرجد هندی، نیشکر و پتاسیم سدیم تارترات (نمک راشل) خاصیت پیزوالکتریک دارند. کوارتز و نمک راشل بیشترین پیزوالکتریک را در خود انباشته میکنند. کیوریها اثر پیزوالکتریک معکوس را پیشبینی نکردند، اثر معکوس با روابط ریاضی توسط گابریل لیپمان[و ۷] در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. کیوریها بلافاصله وجود اثر معکوس را تأیید کردند و به تحقیقات خود ادامه دادند تا اثبات کامل تغییر شکل الکتریکی-الاستیکی-مکانیکی سرامیکهای پیزوالکتریک را بدست آورد.
در چند دهٔ بعد، پیزوالکتریک یک پدیدهٔ کمیاب آزمایشگاهی باقی ماند. کارهای بیشتری برای تعریف ساختار کریستالهایی که پیزوالکتریک را در خود ذخیره میکنند انجام شد که در سال ۱۹۱۰ با انتشار کتابی با موضوع فیزیک کریستالها[و ۸] به اوج خود رسید که ۲۰ دستهٔ کریستال طبیعی را که قابلیت ذخیرهٔ پیزوالکتریک داشتند، شرح داد و ثابتهای پیزوالکتریک را با دقت زیاد توسط تحلیلها و آمارهای کششی بدست آورد.

اولین استفادهٔ عملی از دستگاههای پیزوالکتریک، سونار (دستگاه کاشف زیردریایی بوسیله امواج صوتی) بود که در جنگ جهانی اول توسعه پیدا کرد. در سال ۱۹۱۷ در فرانسه پائول لانگ وین و همکارانش روی یک آشکارگر ماوراء صوت کار کردند. دستگاه از یک مبدل ساخته شده بود که از کریستالهای نازک کوارتز که با دقت بین دو صفحهٔ نازک فولاد متصل شده بودند و یک هیدروفن (دستگاهی که اصوات زیر آب را ثبت میکند) برای شناسایی و بازگرداندن انعکاس صوت، تشکیل شدهبود. با فرستادن صوت فرکانس بالا از مبدل و اندازهگیری مدت زمان رفت و برگشت صدا میتوان فاصله تا شیء مورد نظر را اندازهگیری کرد.
استفادهٔ موفقیتآمیز پیزوالکتریک در سونار موجب شد علاقهٔ فزایندهای در توسعهٔ دستگاههای پیزوالکتریک ایجاد شود. در چند دههٔ بعد، مواد و کاربردهایی جدیدی از پیزوالکتریک کشف شد.
دستگاههای پیزوالکتریک در بسیاری از زمینهها جا باز کردند. دستگاه ضبط صدای سرامیکی هم ارزان و هم دقیق بود و آسانتر ساخته میشد. پیشرفت مبدلهای ماوراء صوت موجب شد سنجش گرانروی (ویسکوزیته) و کشسانی در مایعات و جامدات آسانتر شود که نتیجهٔ آن پیشرفتی عظیم در مطالعه بر روی مواد بود. بازتاب سنجهای ماوراء صوت میتوانستند ترکهای فلزات را در ریختهگری بیابند که موجب افزایش ایمنی ساختار شد.
در جریان جنگ جهانی دوم گروههای غیر مستقل پژوهش در ایالات متحدهٔ آمریکا، روسیه و ژاپن دستهٔ جدیدی از مواد ساخت بشر را کشف کردند که فروالکتریک نام گذاری شد و خیلی بیشتر از مواد طبیعی پیزوالکتریک را ذخیره میکردند و موجب علاقهای وافر در توسعهٔ تیتانات باریم و بعدها ZrTiO3 با ویژگیهایی منحصربفرد شد.
یک نمونهٔ مهم کاربرد پیزوالکتریک توسط آزمایشگاههای تلفن بل توسعه یافت. به دنبال جنگ جهانی اول فردریک بر روی تلفن بیسیم در دانشکدهٔ مهندسی مشغول به کار بود که باعث توسعهٔ کریستال “AT cut” شد. کریستالی که در محدودهٔ دمایی وسیعی مورد استفاده قرار میگرفت. این به لوازم فرعی سنگینی که کریستال قبلی نیاز داشت، نیاز نداشت. نتیجهٔ آن تسهیل استفاده در صنایع هوایی بود. با استفاده از رادیو در صنعت، هواپیماها میتوانستند حملات دسته جمعی هماهنگ انجام دهند.
پیشرفت دستگاههای پیزوالکتریک و علم مواد منحصراً در داخل کمپانیهای توسعه دهنده نگهداری شد که بیش از همه به علت شروع جنگ همچنین برای محفوظ داشتن حق امتیاز بود. کریستالهای کوارتز اولین موادی بودند که از آنها بهرهبرداری شد، اما دانشمندان به دنبال موادی با کارایی عالی بودند. با وجود پیشرفت در علم مواد و کامل شدن فرایند تولید، بازار ایالات متحده به آن سرعت رشد نکرد. بدون بازار مصرف جدید، پیشرفت صنعت پیزوالکتریک ایالات متحده با مشکل جدی مواجه بود.
در مقابل تولیدکنندههای ژاپنی اطلاعاتشان را به اشتراک گذاشتند و به سرعت، هم از نظر فنی و هم از نظر تولیدی در مسابقه پیروز شدند و بازارهای جدیدی برای محصولات خود به وجود آوردند. تلاشهای ژاپنیها در علم مواد موجب ساخت مواد پیزوالکتریک جدیدی شد که با ایالات متحده رقابت میکرد، اما بدون محدودیت گران حق امتیاز. بیشتر پیشرفتهای ژاپنیها در علم پیزوالکتریک شامل طراحیهای جدید در صافیهای پیزوسرامیک برای رادیوها، تلویزیونها، پیزوبوزرها (تولید صدای تیز و تند)، مبدلهای صدا که میتوانند مستقیماً به مدارهای الکتریکی متصل شوند و چاشنیهای پیزوالکتریک که برای سیستم موتورهای کوچک (و بریانکنها) جرقه تولید میکنند، بود. مبدلهای ماوراء صوت که امواج را به هوا میفرستند مدت زیادی وجود داشتند اما اولین استفادهٔ تجاری در کنترلهای تلویزیون بود. امروزه این مبدلها بر روی انواع مختلف ماشینها به عنوان ردیاب کاربرد دارند و به راننده کمک میکنند فاصلهٔ عقب ماشین تا اجسامی که در سر راه آن قرار دارد را بفهمد.

ذات اثر پیزوالکتریک به دوقطبیهای الکتریکی لحظهای در جامدات مربوط میشود. سطح خارجی ممکن است در شبکهٔ کریستالی با بار نامتقارن محیطی تحریک شده باشد (از جمله درBaTiO۳ و PZTها) یا ممکن است مستقیماً توسط گروههای مولکولی حمل شود (به عنوان مثال در نیشکر). چگالی دوقطبی یا پلاریزاسیون [Cm/m۳] به سادگی با نتیجهگیری از دوقطبیهای لحظهای در واحد حجم سلول واحد برای کریستالها محاسبه میشود. همچنانکه هر دوقطبی یک بردار است، چگالی دوقطبی نیز بردار است (یک کمیت برداری است). دوقطبیهای نزدیک هم در مناطقی به نام قلمرو ویس جهتگیری میکنند. این قلمروها معمولاً تصادفی جهتدار میشوند اما میتوانند توسط فرایند قطبیسازی (با قطبیسازی مغناطیسی متفاوت است) همجهت شوند، فرایندی که یک میدان الکتریکی قوی (معمولاً در دماهای بالا) به جسم اعمال میشود. تمام مواد پیزوالکتریک قطبی نمیشوند.
نکتهٔ قطعی در مورد اثر پیزوالکتریک تغییر قطبش هنگام اعمال فشار مکانیکی است که ممکن است به علت ایجاد آرایش فضایی جدید دوقطبیها یا به علت جهتگیری مولکولهای قطبی لحظهای تحت اثر نیروی خارجی باشد سپس خاصیت پیزوالکتریک در اثر تنوع در قدرت دوقطبیها یا جهت آنها یا هر دو به وجود آید. این اثر بستگی دارد به:
تغییر در قطبش در تغییر چگالی سطحی بار در سطوح کریستالی ظاهر میشود یعنی تنوع میدان الکتریکی در سطوح، چون که واحد چگالی بار سطحی و قطبش یکسان است [C/m۲] = [Cm/m۳]. اگرچه خاصیت پیزوالکتریک بر اثر تغییر در چگالی بار سطحی سبب نمیشود، اما به علت چگالی دو قطبی در سطح سبب میشود. به عنوان مثال اگر به یک سانتیمتر مکعب کواتز ۲ کیلونیوتن نیرو وارد شود ۱۲۵۰۰ ولت اختلاف پتانسیل ایجاد میکند.
خاصیت پیزوالکتریک اثر ترکیب شدهٔ رفتار الکتریکی ماده است.
از ۳۲ گروه کریستال، ۲۱ گروه تقارن مرکزی ندارند و از اینها ۲۰ گروه خاصیت پیزوالکتریک دارند (گروه ۲۱ام کلاس مکعب ۴۳۲ است) که ۱۰ تا از آنها کلاس کریستال قطبی را نشان میدهند که قطبش خودبهخودی بدون فشار مکانیکی را دارا هستند و خاصیت پیروالکتریک را ذخیره میکنند. اگر دوقطبی لحظهای توسط میدان الکتریکی معکوس شود به آن ماده فروالکتریک گویند.
کلاسهای کریستالی قطبی: ۱، ۲، m، mm۲، ۴، ۴ mm، ۳، ۳m، ۶، ۶ mm.
کلاسهای کریستالی پیزوالکتریک: ۱، ۲، m، ۲۲۲، mm۲، ۴، ۴، ۴۲۲، ۴ mm، ۴۲m، ۳، ۳۲، ۳m، ۶، ۶، ۶۲۲، ۶ mm، ۶۲m، ۲۳، ۴۳m.
کریستالهای قطبی بدون اعمال فشار مکانیکی نیز قطبی هستند. اثر پیزوالکتریک خود به خود بر اثر قدرت یا جهت قطبش یا هر دو آشکار میشود. از طرف دیگر کریستالهای پیزوالکتریک غیرقطبی در اثر ایجاد دو قطبی فقط بر اثر اعمال فشار مکانیکی به وجود میآید. در این کریستالها، تنش کریستال را از گروه غیرقطبی به گروه قطبی تبدیل میکند.
بسیاری مواد چه طبیعی چه ساختهٔ دست بشر پیزوالکتریک را ذخیره میکنند.

اثر پیزوالکتریک عموماً به عنوان یک حسگر نیروی بیولوژیکی عمل میکند. این اثر در تحقیقات انجام شده در دانشگاه پنسیلوانیا در اواخر دهه ۱۹۷۰ و اوایل ۱۹۸۰ به کار گرفته شد که در نتیجه مشخص گردید استفادهٔ پیوسته از پتانسیل الکتریکی میتواند هم تخریب استخوانها و هم رشد استخوانها را (بسته به پلاریته یا قطبیت آنها) باعث شود. مطالعات بیشتر انجام گرفته در دههٔ ۱۹۹۰ معادلهٔ ریاضی را فراهم نمود که شباهت انتشار موج استخوانهای بلند را همانند کریستالهای شش گوشه (کلاس ۶) تأیید میکرد.
خانوادهٔ سرامیکهای دارای ساختارهای پروسکایت و یا تنگستن– برنز، خواص پیزوالکتریک از خود نشان میدهند:
اخیراً نگرانیها در خصوص سمی بودن دستگاهها و اجزای حاوی سرب افزایش یافته و در این خصوص استفاده از قوانین و مقررات محدودکننده مواد خطرناک را مطرح ساخته است. افزایش این نگرانیها تأکید بر توسعهٔ کامپوزیتی مواد پیزوالکتریک بدون سرب میباشد.
تاکنون، نه اثر محیطی این مواد تأیید شده و نه پایداری این مواد به هنگام تهیهٔ آنها.
PVDF خاصیت پیزوالکتریک را چندین بار بیشتر از کوارتز نشان میدهد. بر خلاف سرامیکها، که در آن ساختار کریستالی ماده به وجود آورندهٔ اثر پیزوالکتریک است، در پلیمرها مولکولهای زنجیرهٔ بلند مزدوج هنگامی که در محدودهٔ یک میدان مغناطیسی قرار میگیرند یکدیگر را جذب و دفع میکنند.
امروزه کریستالهای پیزوالکتریک کاربردهای متعدد و بسیاری دارند از جمله:
همانگونه که پیش از این اشاره گردید، پیزوالکتریسیتهٔ مستقیم برخی مواد مانند کوارتزها میتوان تفاوتهای فراوانی را در میزان ولتاژ ایجاد نماید.
شناختهشدهترین کاربرد موجود فندک الکتریکی میباشد: فشار شستی باعث میگردد چکش فنری به کریستال پیزوالکتریک ضربه وارد کند و جریان الکتریکی با ولتاژ کافی ایجاد گردد و جرقه جاری میگردد، و در نتیجه گاز را گرم و مشتعل مینماید. در حال حاضر بسیاری از جرقهزنهای قابل حمل مبتنی بر این فناوری ساخته میشوند.
تحقیقات مشابهی نیز توسط دارپا در ایالات متحده صورت گرفته که پروژهٔ آن زراعت انرژی نام گرفته است. این پروژه شامل بر فعالیتهایی بود که تجهیزات زمین جنگ از طریق ژنراتورهای پیزوالکتریک جای گرفته در چکمهٔ سربازان باردار شود. با این حال، این منابع زراعت انرژی در مجموع آثاری بر روی بدن سربازان دارند. تلاشهای دارپا در جهت به دست آوردن ۱ تا ۲ وات از اثر برخورد مستمر پوتین سربازان با زمین به هنگام راه رفتن، به واسطه عدم کاربردی بودن و به خاطر ناراحتیهای ناشی از انرژی ایجاد شده توسط فردی که پوتینها را به پا کرده است، متوقف گشت.
مبدل پیزوالکتریک نوعی چندراهه با ولتاژ متناوب میباشد. برخلاف یک مبدل معمولی که از جفتشدن مغناطیسی بین ورودی و خروجی بهره میگیرد، مبدل پیزوالکتریک از جفتشدن صوتی استفاده میکند. این ابزارها میتوانند در تبدیلهای ایسی-دیسی برای به کار انداختن لامپهای فلورسنت با کاتود سرد به کار گرفته شوند.
اصل مورد بحث در به کارگیری حسگرهای پیزوالکتریک این است که یک بعد فیزیکی که به یک نیرو تبدیل شده در دو جنبه متضاد از عنصر حسگر بودن عمل میکند. بسته به طراحی یک حسگر، گونههای مختلفی میتواند برای بارگذاری پیزوالکتریک مورد استفاده قرار گیرد.
تشخیص انواع فشار به شکل صدا معمولترین نوع عمل حسگر است، به عنوان مثال میکروفنهای پیزوالکتریک امواج صوتی ماده پیزوالکتریک را مرتعش ساخته و باعث تغییر ولتاژ میشوند، و یا گیرندههای پیزوالکتریک در گیتارهای الکتریکی. حسگر پیزوالکتریک که به بدنهٔ یک آلت (موسیقی) متصل شده باشد را میکروفن اتصال میخوانند.
حسگرهای پیزوالکتریک به طور ویژه توأم با صداهای با فرکانس بالا در مبدلهای مافوق صوت جهت عکسبرداریهای پزشکی مورد استفاده قرار میگیرند.
بنا به تحقیقی منتشرشده در آوریل و مارس سال ۲۰۰۹ میلادی در دانشگاه امآیتی، ژونگ لینگ ونگ فکر میکند که سیمهای پیزوالکتریک نانو میتوانند به وسایل پزشکی گذاشته شده در بدن نیرو برساند و به عنوان حسگرهای کوچک عمل کنند.
نانو حسگرها به شدت حساس، کم مصرف و البته بسیار کوچکند. آنها میتوانند در شناسایی علائم مولکولی بیماری در خون، مقادیر جزیی گازهای سمی در جو و آلودگیها در غذا مورد استفاده قرار گیرند. اما منابع انرژی و مدارهای لازم برای فعال سازی این وسایل کوچک ساخته شدن آنها را دشوار میکند. هدف ونگ، نیرو بخشیدن به دنیای نانو توسط مولدهای کوچکی که از پیزوالکتریک بهره میبرند است. اگر او موفق شود، نانو حسگرهای زیستی و شیمیایی قادر خواهند بود به خودشان نیرو ببخشند.
ونگ برای اولین بار در سال ۲۰۰۵ این پدیده را در مقیاس نانو با خم کردن اکسید روی توسط پایهٔ میکروسکوپ اتمی نشان داد. هنگامی که سیم خم میشود و به حالت اولیه برمیگردد پتانسیل تولید شده توسط یونهای اکسیژن و روی جریان الکتریکی به وجود میآورند. جریانی که او از نخستین آزمایش بدست آورد اندک بود. پتانسیل الکتریکی حداکثر به چند میلی ولت میرسید. اما ونگ مطمئن بود که با علم مهندسی و با مهارکردن لرزههای کوچک اطرافمان یک نانو منبع انرژی طراحی کند از جمله امواج صدا، باد و تلاطم گردش خون بر روی وسیلهٔ کار گذاشته شده در بدن. این حرکات کوچک موجب خم شدن نانو سیمها میشود که به تولید جریان الکتریکی میانجامد.
ونگ نانو سیم اکسید روی را در یک لایه پلیمر جاسازی کرد. هنگامی که ورقه خم شد mv۵۰ اختلاف پتانسیل تولید شد. این گامی بزرگ در راستای نیرو بخشیدن به نانو حسگرهاست. او امیدوار است نهایتاً این مولدها در تار و پود لباس بافته شود. در این صورت یک پیراهن میتواند انرژی لازم را برای شارژ شدن باتری وسایلی مثل آیپاد تأمین کند.
برخلاف اجزای الکترونیکی قدیمی، نانوپیزوترونیکها به منبع جریان خارجی نیاز ندارند و وقتی در معرض نیروی مکانیکی قرار میگیرند به خودشان نیرو وارد میکنند.
یک سمعک نانو پیزوالکترونیک ترکیب شده با نانو مولد از رشتهای از نانو سیمها استفاده میکند که هر کدام تنظیم شده است در محدودهٔ عظیمی از صداها با فرکانس متفاوت به ارتعاش درآید. نانو سیمها صداها را به سیگنالهای الکتریکی تبدیل و آنها را پردازش میکنند به همین جهت آنها مستقیماً میتوانند به نرونهای مغز فرستاده شوند. سمعکها نه فقط متراکمتر و حساستر میشوند بلکه باتریهای آنها قابل تعویض خواهد بود. حسگرهای نانوپیزوالکترونیک همچنین برای تشخیص فشار مکانیکی در موتور هواپیما استفاده میشوند؛ فقط چند ترکیب کوچک نانو سیم فشار را برصفحه نمایش میآورد؛ اطلاعات را پردازش میکند و به کابین خلبان منتقل میکند.
ونگ pH و حسگرهای اشعهٔ UV را با این وسایل ملحق کرد و نشان داد که وقتی تحت فشار قرار بگیرند میتوانند به حسگر نیرو بدهند.
وسایلی که انرژی هدر رفته را ذخیره میکنند و امکانات جدیدی را به ارمغان میآورند مثل لباسهایی که با حرکات بدن وسایل الکترونیکی را شارژ میکنند از مواردی است که در شاخهٔ نانوپیزوالکتریک دنبال میشود. هم اکنون محققان اولین مولدها را که بر پایهٔ نانو سیمها کار میکنند تولید کردهاند که انرژی مکانیکی لازم را برای نیرو رساندن به وسایل الکترونیکی کوچک مثل دیودها و صفحهٔ نمایش کریستال مایع ذخیره میکنند.
پیزوالکتریکها قبلاً در میکروفنها، حسگرها، ساعتها و… استفاده شدهاند اما تلاش برای ذخیرهٔ انرژی بیومکانیکی توسط آنها بینتیجه مانده است زیرا آنها بیش از اندازه سفتاند. پلیمرهای پیزوالکتریک موجودند اما استفاده از آنها به صرفه نیست.
صاعقه گیر–صاعقه گیر پسیو- صاعقه گیر اکتیو
منبع:ویکی پدیا
Permanent link to this article: https://peg-co.com/home/%d8%b5%d8%a7%d8%b9%d9%82%d9%87-%da%af%db%8c%d8%b1-%d9%87%d8%a7%db%8c-%d8%a8%d8%a7-%d8%aa%da%a9%d9%86%d9%88%d9%84%d9%88%da%98%db%8c-%d9%be%db%8c%d8%b2%d9%88-%d8%a7%d9%84%da%a9%d8%aa%d8%b1%db%8c%da%a9/

منبع :firuzpayervandi.blogfa.com
Permanent link to this article: https://peg-co.com/home/%da%98%d9%86%d8%b1%d8%a7%d8%aa%d9%88%d8%b1%d9%87%d8%a7%db%8c-%d8%a7%d9%84%d9%82%d8%a7%db%8c%db%8c/