Daily Archive: ۱۶ مهر ۱۳۹۶

مديريت وبسايت بهروز عليخانی

ضوابط نصب صاعقه گیر و چاه ارت مربوطه و هادی نزولی

 

فروش صاعقه گیر اذرخش

قیمت صاعقه گیر آذرخش

ضوابط نصب صاعقه گیر و چاه ارت صاعقه گیر مربوطه و هادی نزولی

 



 عبور جریان بسیار زیاد صاعقه بیش از آنکه در کل شبکه آرماتور ساختمان پخش شود، بویژه در نزدیکی محل برخورد صاعقه به ساختمان، می‌تواند خسارت آفرین باشد.


همچنین در صورت عبور این جریان از مسیرهای مقاومت‌دار ولتاژهای خطرناکی پدید می‌آید.


لذا لازم است کلیه ساختمان های مرتفع و یا ساختمان هایی که در نقاط مرتفع زمین و یا سایر نقاط صاعقه‌گیر احداث می‌شوند به صاعقه‌گیر مناسب تجهیز گردند.

لازم است از اتصال صاعقه‌گیر و هادی پایین‌رو آن به بدنه ساختمان جلوگیری شود .

و بهتر است هادی‌های پایین‌رو در گوشه‌های ساختمان و به صورت روی کار از بالا به سمت پایین ساختمان هدایت شود.

اجرای هادی یا هادیهای پایین‌رو از درون داکتهای داخل ساختمان مجاز می‌باشد.

از داکت مخصوص هادی پایین‌رو برای هیچ سیستم دیگری بجز صاعقه‌گیر نباید استفاده نمود


هادیهای پایین‌رو بایستی از ابتدا تا انتها یکپارچه باشند و استفاده از هیچ مفصل یا اتصالی مجاز نمی‌باشد.


باتوجه به اینکه دسترس بودن هادی پایین رو برای افراد عادی می تواند خطرآفرین باشد استفاده از هادی بدون روکش در این موارد مجازنبوده و توصیه می شود از هادی با روکش فشار ضعیف ۱۰۰۰ ولت استفاده گردد.


هادیهای پایین‌رو بایستی فقط به شمارنده صاعقه و سپس به شین اصلی ارت (نقطه اندازه گیری چاه ارت) ساختمان متصل شود و به غیر از آن هیچ نقطه اتصال دیگری به شبکه ارت یا اجزاء فلزی ساختمان نداشته باشد.


مقطع هادی پایین‌رو براساس استانداردهای متداول حداقل ۳۵ میلیمتر مربع است.


عیوب مربوطه به عدم هم بندی Equipotential Bounding Defects


در هنگام برخورد مستقیم صاعقه، عدم وجود اتصالات و هم بندی صحیح می تواند باعث ایجاد جرقه ی شدید و در نتیجه ایجاد جریان مخرب بین دو وسیله گردد

بنابراین باید از هم بندی اجزای صاعقه گیر و عملکرد صحیح آن اطمینان حاصل نمود.

به همین خاطر در یک سیستم برق گیر، تمامی اجزاء و تجهیزات جانبی شامل شبکه ی مخابرات، IT و … به وسیله ی یک هم بندی اضافه، به صاعقه گیر وصل می شوند.

ابتدا تمامی تجهیزات یک ساختمان به وسیله ی هم بندی و سیستم حفاظت در مقابل ضربهSUREGE ARRESTER به یک شبکه ی ارت داخلی وصل شود.

و درانتهای شبکه به وسیله قسمت هم پتانسیل کننده به شبکه ی صاعقه گیر وصل می گردند.


یک برقگیر خوب باید دارای مشخصات زیر باشد :


در ولتاژ نامی شبکه، به منظور کاهش تلفات دارای امپدانس بینهایت باشد.

در اضافه ولتاژ به منظور محدود سازی سطح ولتاژ دارای امپدانس کم باشد.


توانایی دفع یا ذخیره انرژی موج اضافه ولتاژ را بدون اینکه خود صدمه ببیند داشته باشد.


پس از حذف عبور اضافه ولتاژ بتواند به شرایط مدار (حالت کار عادی) برگردد.


در زیر مقاومت های مورد نیاز برخی از سیستم های مختلف که در استانداردهای گوناگون به آن اشاره شده است را ملاحظه می فرمایید:  


 سیستم حفاظت در مقابل صاعقه ،کمتر از۱۰اهم

 پست های برق ،کمتر از ۵ اهم

تابلوهای برق فشارضعیف،کمتر از۵ اهم

دکل های مخابراتی ،کمتر از ۳ اهم

سایت های کامپیوتری،کمتر از۲ اهم

تجهیزات ابزار دقیق،کمتر از ۱ اهم

سایت های مخابراتی کمتر از ۳ اهم

مراکز مخابرات کمتر از ۱ اهم


انواع برقگیرها:


برقگیر میله ای


برقگیر لوله ای


برقگیر سیلیکون کارباید (SIC)

 

برقگیر نوع اکسید فلزی (MOV)




معایب برقگیر میله ای:

تداوم عبور جریان به زمین حتی پس از حذف اضافه ولتاژ

افت شدید ولتاژ فاز به خاطر اتصال کوتاه شدن فاز در لحظه عبور جریان از برقگیر

دارای تاخیر زمانی متناسب با اضافه ولتاژ

پراکندگی زیاد ولتاژ جرقه

قیمت صاعقه گیر آذرخش




پارامترهای مهم برای انتخاب برقگیر مناسب جهت حفاظت عایقی:

ماکزیمم ولتاژ کار دائم (MCOV)

ولتاژ نامی (Ur)

جریان تخلیه نامی ( ۸٫۲۰ µsec )

ماکزیمم جریان ضربه قابل تحمل ( ۴٫۱۰ µsec )

قابلیت تحمل جذب انرژی W


عوامل مهم در آسیب دیدگی برقگیرها:


نفوذ رطوبت و آلودگی


اضافه ولتاژهای گزرا و موقتی


عدم انطباق شرایط بهره برداری با مشخصه برقگیر (طراحی غلط )


عوامل ناشناخته


استاندارد فرانسه NFC 17-102, NFC 17-100 پیشنهاد می کند صاعقه گیر در سه قسمت مورد بحث قرار گیرد.

 ارزیابی ریسک صاعقه

 انتخاب سطح حفاظت و تجهیزات

انتخاب تجهیز یا تجهیزات جهت حفاظت



روش های ارزیابی ریسک صاعقه:


شبکه بندی به صورت مش یا قفسه ای MESHED CAGES


در این روش حداکثر عرض مش ها نباید از ۱۵متر تجاوز کند.

نصب سیستم برق گیر بر اساس موارد زیر است:

الف:

نصب یک چند ضلعی (معمولاً ۴ ضلعی) در پیرامون سقف ساختمان (محیط سقف)

ب:

اضافه نمودن هادی های متقاطع به شبکه ی اولیه جهت اضافه شدن مش بندی


ج:

عبور الزامی هادی از هر برآمدگی در سقف.

 

یعنی از هر قسمت که ارتفاع مجزا از سقف دارد، سیستم شبکه به صورت کامل انجام پذیرد و سپس به شبکه ی اصلی متصل شود.


د:

شاخک های عمودی (Air Terminal) باید در مرتفع ترین و آسیب پذیرترین نقاط و گوشه ها و نزدیک تجهیزات جانبی نصب گردند.


ترتیب و فواصل:

 

فاصله ی ۲ ترمینال (شاخک) ۳۰ سانتی متری از ۱۰ متر بیش تر نباشد.

فاصله ی ۲ ترمینال (شاخک) ۵۰ سانتی متری از ۱۵ متر بیش تر نباشد. 

 

شاخک (strike air terminal) خارج از چند ضلعی قرار نگرفته و در داخل چند ضلعی باشد.


هادی های پایین رو


جهت هر میله ی برق گیر ساده یا ESE نیاز به یک کنتور (شمارنده ی تعداد صاعقه) وجود دارد.

همچنین جهت هر ۴ هادی پایین رو و حداقل یک شمارنده نیاز است.

شمارنده معمولاً در ارتفاع ۲ متری بالای سطح زمین و در انتهای هادی پایین رو نصب می شود.

حالت های خاص

وقتی برق گیر (چه از نوع برق گیر ساده و چه از نوع ESE) در یک ساختمان نصب می گردد، به ازای هر میله حداقل یک هادی پایین رو نیاز است.

اما در دو حالت نیاز به هادی پایین رو جهت هر میله است:

الف: نصف عرض ساختمان بیش از ارتفاع ساختمان باشد. B>A دو هادی پایین رو (منظور از نصف عرض ساختمان فاصله ی لبه ی ساختمان تا میله ی برق گیر است).


ب: ارتفاع ساختمان معمولی بیش از ۲۸ متر و یا در دودکش ها یا ساختمان های صنعتی بیش از ۴۰ متر باشد.

هادی های ساده (برق گیرهای ساده SRL)

در این گونه سیستم ها به ازای هر برق گیر (میله)، حداقل یک هادی پایین رو نیاز است.

در صورتی که ارتفاع ساختمان بیش از ۳۵ متر باشد، حداقل ۲ هادی پایین رو جهت هر میله ی برق گیر نیاز است.

این دو هادی به دو دیوار مختلف نصب می گردند.

همچنین در ساختمان های مهم و پر رفت و آمد نیز برای میله ی برق گیر ۲ هادی پایین رو نیاز است.




هادی های برق گیر (صاعقه گیر) SRC و ESE

قاعده ی کلی در برق گیرها آن است که بالاترین نقطه ی هر هادی یا برق گیر شاخکی بیش ترین احتمال اصابت صاعقه را دارد.

بر طبق سفارش استاندارد، سر برق گیر باید حداقل ۲ متر از تمام نقاط ساختمان (پشت بام، تجهیزات فلزی و جانبی) بلندتر باشد.

در این حالت بهتر است برق گیر در بالاترین نقطه ی ساختمان نصب گردد.

همچنین محل صاعقه گیر با توجه به تجهیزات جانبی و فواصل مجاز از بدنه های فلزی انتخاب می شود.

جهت افزایش طول صاعقه گیر، استفاده از میله ی واسطه با جنس مخصوص لازم است.

شرکت هلیتا واسطه ی صاعقه گیرهای میله ای در طول های کلی ۷۵/۵ و ۵/۷ متر را جهت افزایش طول صاعقه گیر به بازار ارائه داده است.

این میله ها از جنس فولاد ضد زنگ هستند.

در زمین های ورزشی، استخرها و کمپینگ می توان از سیستم ESE استفاده نمود

جهت محاسبه ی ریسک و سطح پوشش استفاده، از نرم افزار Helita استفاده می شود.

همچنین تمهیدات ویژه ای جهت نصب برق گیر در نزدیکی دودکش های فلزی و تجهیزات دیگر در نظر گرفته می شود.

در صورتی که هوای محل نصب دارای گازهای خورنده یا دودهای اسیدی – کربنی باشد، باید فاصله ی مناسب نصب در نظر گرفته شود.

فاصله ی ۵۰ سانتی متر از تجهیزات فلزی مانند دودکش فاصله ی مناسبی است.

در ساختمان هایی که بیش از یک صاعقه گیر میله ای (ESE یا SRC) در پشت بام آن ها نصب شده باشد و در صورتی که مانع بیش از ۵/۱ ارتفاع بین آن ها نباشد، باید تمامی صاعقه گیرها به یکدیگر متصل شوند

در صورتی که بین هر کدام از آن ها مانع بلندتر از ۵/۱ متر باشد، نباید به یکدیگر متصل گردند.

در انتخاب هادی های مربوط به صاعقه گیر، چه هادی شبکه بندی و یا پایین رو، استفاده از سطح مقطع کم تر از ۳×۳۰ میلی متر و استفاده از هادی های گوشه دار و نوک دار ممنوع است.


آنتن های تلویزیون و رادیو


با موافقت کاربر آنتن ها، می توان تمامی تجهیزات صاعقه گیر را بر روی میله ی آنتن تلویزیون یا دریافت کننده های دیگر نصب نمود.

در این حالت لازم است موارد زیر رعایت گردد:

الف: سر برق گیر حداقل ۲ متر از بلندترین نقطه ی آنتن بلندتر باشد.


ب: کابل کواکسیال آنتن به صورت مستقیم از کنار هادی برق گیر به طرف پایین رفته باشد و به آن هادی محکم شده باشد.

ج: نیاز به اتصالات مشترک مرسوم به guging ندارد.


د: هادی پایین رو به میله با کلمپ ثابت شده باشد.


این روش باعث کاهش هزینه ی نصب صاعقه گیر نیز می شود.



اتصالات:


هادی های متصل به برق گیر حداقل قطر ۶ تا ۸ میلی متر داشته باشند.

در محل هایی که نیاز به شمش مسی است، قطر آن از ۳۰×۳۰ کم تر نباشد .

مانند اتصال به کلمپ ها و کانترها.

کوپلینگ تست:


هر هادی پایین رو باید به یک کوپلینگ تست وصل گردد تا در هنگام تست، مقاومت زمین و یا تست جریان و مقاومت برق گیر، از جا برداشته شود.

قسمت تست (کوپلینگ تست) در ارتفاع ۲ متری از سطح زمین نصب می گردد و قابل بازرسی چشمی است.

در ضمن بر روی آن کلمات مربوط به اسم تجهیز و شماره ی آن نوشته می شود.




هادی های حفاظتی:

این هادی ها بین کوپلینگ تست و قسمت زمین (هادی ها و الکترود زمین) نصب می گردد و ۲ متر طول عمودی و مقداری نیز طول افقی دارد و از جنس مس (هم جنس با دو هادی سر و ته) و یا همان قطراست.

در نصب آن از پیچ و مهره ی همجنس استفاده می شود تا خوردگی به وجود نیاید.

قسمت عمودی آن با سه اتصال به دیوار محکم می شود. اتصالات (کلمپ ها) از جنس خود شمش یعنی مسی است.

هم بندی اتصالات Equipotential Bonding



برآورد اجمالی:


در هنگام صاعقه، عبور جریان شدید از هادی های برق گیر، ایجاد اختلاف پتانسیل شدید بین نقاط صاعقه گیر و شبکه های مجاور شامل لوله های گاز، آب، سازه ی فلزی ساختمان، تجهیزات سرمایشی و گرمایشی می نماید.

این اختلاف ولتاژ گاهی اوقات به خاطر ارت شدن این تجهیزات و عدم هم پتانسیل شدن با صاعقه گیر است و باعث ایجاد جرقه (تخلیه ی سطحی) می گردد.

جهت جلوگیری از این معضل دو روش وجود دارد:


الف: برقراری یک اتصال دائمی بین شبکه ی برق گیر و شبکه ی فلزی ساختمان (هادی های ساختمان)

ب: ایجاد یک فاصله ی ایمن بین هادی های صاعقه گیر و تمامی تجهیزات در معرض تخلیه


فاصله ی ایمن فاصله ای است که در صورت ایجاد صاعقه در شبکه های برق گیر، بین این شبکه و هادی های موجود در ساختمان که نزدیک شبکه ی برق گیر هستند، هیچ گونه تخلیه ی الکتریکی به وجود نیاید.

این مهم با افزایش قدرت عایقی تجهیزات و تغییر مسیر هادی ها در هنگام نصب ممکن می گردد که البته روش هزینه بر و پر کاری است.

بنابراین از روش هم پتانسیل کردن بیش تر استقبال می گردد.

روش ایجاد فاصله ی ایمنی فقط در مواردی مانند لوله گاز، منابع نفت و گاز و … کاربرد دارد که تجهیزات به سبب احتمال انفجار، ترکیدگی و ریسک خطر بالا، قادر به هم بندی نباشند.


محاسبات فاصله ی ایمنی: S(m)=n.kj.L/km


S(m): 
فاصله ی ایمنی بین هادی های برق گیر و تجهیزات فلزی به حسب متر

n: ضریب که بستگی به تعداد هادی های پایین رو (در سیستم ESE) قبل از اتصال به یکدیگر دارد و مقدار آن:


برای یک هادی پایین رو n=1


برای دو هادی پایین رو n=0.6


برای سه یا بیش تر هادی پایین رو n=0.4

Ki: ضریب، بستگی به لول (سطح) حفاظتی دارد.


جهت سطح حفاظتی یک (حفاظت بالا) مانند خازن سوخت، ساختمان های مهم Ki=0.1

جهت سطح حفاظتی دو (حفاظت خوب) بناهای تاریخی وساختمان های پر جمعیت Ki=0.075

جهت سطح حفاظتی سه (حفاظت نرمال) ساختمان های مسکونی معمولی Ki=0.05


Km: 
ضریب مواد بین دو سیستم برق گیر و تجهیز.


وجود هوا بین دو سیستم Km=1


وجود جامدات بین دو سیستم Km=0.52
فاصله ی عمودی بین نقطه ایی که اندازه گیری انجام می شود (کلپ تست) و نزدیک ترین نقطه (هادی) تجهیز.


S: 
برای لوله های گاز ۳ متر در نظر گرفته می شود.


مثال:

در یک ساختمان با درجه ی حفاظت یک (سطح حفاظت بالا) با ارتفاع ۳۰ متر سیستم برق گیر نصب شده است (نوع ESE).

سوال یک:

سیستم تهویه ی هوا در پشت بام ساختمان نصب شده است.

در صورتی که ۳ متر با شبکه ی برق گیر فاصله داشته باشد، چرااین فاصله ایمن است؟

مقدار L برابر ۲۵ متر در نظر گرفته شود

جواب:


چون ۹۲/۱ متر از ۳ متر کم تر است این سیستم در فاصله ی ایمن قرار دارد.

از نرم افزار هلیتا می توان فاصله ی ایمن را محاسبه نمود.


هم بندی شبکه ی فلزی تجهیزات جانبی  EQUTPOTENTIAL BONDING OF EXTERNAL METALIC NET WORKS


راه دوم حفاظت تجهیزات جانبی ساختمان مانند سازه ی فلزی، لوله ها، سیستم هواساز و هم بندی آن ها و هم پتانسیل کردن با شبکه ی صاعقه گیر است.

این حالت وقتی لازم است که نتوان فاصله ی S حفاظتی را در مورد این تجهیزات یا سیستم زمین آن ها رعایت نمود.


جهت هم پتانسیل کردن این تجهیزات، نیاز به هادی های مطمئن و دائمی با محاسبات سطح مقطع و مقاومت وجود دارد.

تمامی تجهیزات قابل هم بندی مانند :

خطوط شبکه ی مخابراتی،

اطلاعات،

سازه ی فلزی،

لوله های آب،

گاز و غیره به وسیله ی هادی های مطمئن که حداقل سطح مقطع آن ۱۶ است متصل و توسط هادی های پایین رو که به دیوار محکم شده اند، به جعبه ی هم بندی موسوم به Equipotential Box و

از آنجا به آخرین نقطه ی یک شبکه ی برق گیر (قبل از ورود به الکترودهای زمین) که کلمپ تست نامیده می شود، وارد می شود.

این اتصال که موسوم به هم بندی اضافه است، باید قابل باز نمودن جهت تست های خاص، و محل و ارتفاع آن مناسب جهت بازدیدهای دائمی باشد.

با این عمل تمامی تجهیزات یاد شده از خطر جرقه ناشی از صاعقه (Flash Point) محفوظ می مانند

اما با این عمل می باید سیستم های حساس مانند کامپیوتر، شبکه ی IT و شبکه ی مخابراتی به همراه تجهیزات مربوطه توسطsurge arrester محافظت گردد.

بررسی سیستم زمین صاعقه گیر SYSTEM EARTH TERMINATION :



نگاه اجمالی:

در هر سیستم برق گیر، تمامی پتانسیل سیستم در جذب و انتقال صاعقه به زمین نهاد شده است.

در این سیستم جذب صاعقه به وسیله ی هادی های میله ای یا شبکه، انجام و جریان جذب شده توسط هادی های پایین رو به شبکه ی زمین انتقال داده می شود.

در شبکه ی زمین که شامل الکترودها، اتصالات و هادی های مسی است،

انتقال این جریان به زمین در کمترین زمان صورت می پذیرد

تفاوت سیستم زمین در یک برق گیر با شبکه ی ارت سیستم برق ساختمان نیز به همین دلیل است.

در شبکه ی برق گیر بار استاتیک باید در سطح زمین گسترده شود تا بارهای غیر همنام اثر یکدیگر را خنثی (بار منفی ابر و مثبت زمین) کنند،

اما در سیستم برق ساختمان جهت انتقال جریان نشتی از طریق شبکه ی زمین به نقطه ی خنثی ترانفسورماتور باید الکترود ارت به طریق خاص باشد.




هر سیستم زمین مربوط به صاعقه گیر در سه قسمت بررسی شده است:


الف:

در فرانسه و اکثر کشورهای پیشرفته ی دنیا، مقاومت حداکثر ۱۰ اهم جهت سیستم زمین هر صاعقه گیر پیشنهاد می شود.

اندازه گیری این مقدار با باز کردن کلمپ تست و اندازه گیری مقاومت الکترودهای زمین به روش های ۲ سیمه و ۴ سیمه انجام پذیر است.

در صورتی که مقاومت ۱۰ اهم مورد نیاز در این قسمت حاصل نگردد، استاندارد پیشنهاد افزایش طول الکترودهای زمین، نصب میله های ارت در خاتمه هادی های زمین الکترودها و استفاده از الکترولیت های مجاز مانند:

سولفات ها،

بنتونیت و غیره را داده است.


افزایش طول هادی زمین (الکترودها) تا ۱۰۰ متر یعنی هر هادی تا ۲۰ متر نیز مجاز است.


ب: توانایی هدایت جریان


جهت افزایش توانایی حمل جریان توسط هادی زمین، نیاز به سه هادی (الکترودبه جای یک الکترود پیشنهادی استاندارد است.

افزایش تعداد هادی ها موجب افزایش طول هادی و دمپ سریع تر جریان صاعقه می گردد.


ج: هم بندی اضافه (هم پتانسیل کردن)


استاندارد نیاز به یک هم بندی اضافه جهت هم پتانسیل کردن در سیستم برق گیر و سیستم ارت ساختمان را لازم و ضروری می داند.



بازرسی های سیستم صاعقه گیر:

تمامی اجزای یک برق گیر از میله تا سیستم زمین نیاز به بازرسی های دوره ای و اندازه گیری مقاومت دارند. فرایند تست و بازرسی به شرح زیر است:


سیستم حفاظت با سطح بالا (لول یک) سالیانه؛


سیستم حفاظت با سطح خوب (لول دو) دو ساله؛

 

وسیستم حفاظت با سطح معمول سه ساله.

در ضمن پس از هرگونه تعمیرات ساختمان یا اصابت صاعقه بر سیستم، باید بازرسی و تست ها مجدداً انجام پذیرد.


انواع الکترودهای زمین در سیستم صاعقه گیر:


ابتدا سیستم الکترود زمین در صاعقه گیر ساده ESE بررسی می شود:

۱- الکترودهای سه گانه (پنجه اردکی):

در این سیستم سه شمش مسی با ابعاد ۲×۳۰ میلی متر به صورت پنجه اردک است.

هر کدام از شمش ها فاصله ی ۴۵ درجه با شمش وسطی دارند و (حداکثر) طول کل شمش ها ۲۵ متر است و به سه قسمت – یکی از شمش ها حدود ۲ متر بلندتر است – تقسیم می شوند.

دو شمش کناری با زاویه ی ۴۵ درجه به شمش وسط در انتها با استفاده از کلمپ مسی یا کدولد وصل می گردند.

شمش وسط پس از ارتباط با شمش دیگر به طرف نقطه ی تست ادامه می یابد.

طول الکترودهای زمین بستگی به مقاومت زمین دارند و از ۶ متر به بالا ادامه می یابند.


۲- 
میله های ارت:

در صورتی که جغرافیای ساختمان اجازه ی استفاده از شبکه ی پنجه اردکی را ندهد، می توان از سیستم مثلث متساوی الاضلاع با طول هر ضلع ۲ متر که میله ی ارت به انتهای هر زاویه متصل شده است، استفاده نمود.

طول میله ی ارت ۲ متر است. هر میله با زاویه ی مربوطه کلمپ یا جوش کدولد می گردد.

۳- سیستم ترکیبی:

در صورتی که عمل الکترودهای زمین دارای وسعت باشد، می توان جهت کاهش مقاومت زمین از ترکیب شبکه ی پنجه اردکی و میله ارت (در انتها) استفاده نمود.

شبکه ی زمین در صاعقه گیر شبکه ای (شبکه قفسه ای)

در برق گیر نوع شبکه ی قفسه ای از دو سیستم پنجه اردکی و میله ی ارت می توان استفاده نمود.


۱- 
شبکه ی ارت پنجه اردکی:

اتصالات به وسیله ی ۳ تسمه ی مسی ۲×۳۰ میلی متر که یکی از تسمه ها بزرگ تر است و دو عدد دیگر با زاویه ی ۴۵ درجه در انتها به شمش اصل جوش کدولد و یا کلمپ می گردند، صورت می پذیرد.

طول مفید هر یک از هادی ها ۲ متر و در عمق ۶۰ تا ۸۰ سانتی متری زمین دفن می گردند.

۲- میله های ارت:

در این حالت میله های ارت به صورت عمودی به طول ۲ متردر داخل زمین کوبیده می شوند. فاصله ی آن ها ۲ متر از یکدیگر و فاصله از پی یک تا ۵/۱ متر است.

این دو میله به وسیله ی شمش مسی ۲×۳۰ به یکدیگر کلمپ و یا جوش داده می شوند.

علت تفاوت شبکه ی زمین در دو سیستم صاعقه گیر ESE و شبکه ی قفسه ای به خاطر احتمال جذب صاعقه ی آن ها است.


تجهیزات سیستم ارت  EARTH SYSTEM EQUIPMENT BONDING

هنگامی که دریک ساختمان سیستم زمین جهت تجهیزات برق نصب می گردد، می توان سیستم برق گیر را در نقطه ی خاص به نام کلمپ هم بندی ولتاژ به این سیستم وصل نمود.

این نقطه ی اتصال نزدیک ترین نقطه ی به هادی پایین رو است.

در صورتی که امکان وصل این قسمت نباشد، می توان سیستم برق گیر را مستقیم به هادی زمین وصل نمود.

اما اتصال باید به طریقی باشد که جریان القائی صاعقه بر روی کابل های برق اثر گذار نباشد.

در اتصال به نقطه ی هم پتانسیل (هم بندی اضافه) باید بتوان نقطه ی اتصال را جهت تست مقاومت اهمی و جریان جدا نمود.

همچنین نقاط قابل دید و تست دوره ای باشند.

فواصل مجاز بین هادی های سیستم صاعقه گیرو انشعابات برق، آب، گاز زیرزمین:

بر طبق استاندارد NFC فواصل مجاز بین تمامی هادی های شبکه ی صاعقه گیر و سیستم انشعاب برق و آب و گاز و کابل های زیرزمینی بر طبق جدول وجود داشته باشد.

این فواصل برای تمامی اجزای فلزی صادق است و اجزای غیر فلزی را شامل نمی شود.



ضوابط نصب صاعقه گیر و چاه ارت مربوطه و هادی نزولیارزیابی ریسک (احتمال) برخورد صاعقه


بر طبق پیشنهاد استاندارد NFC مطالعه ی صاعقه در سه قسمت انجام می پذیرد.

۱٫ ارزیابی ریسک صاعقه

۲٫ بررسی سطح حفاظت

۳٫ بررسی شیوه ی حفاظت


بررسی ریسک صاعقه (احتمال برخورد صاعقه به ساختمان)

در بررسی احتمال برخورد صاعقه، روش مورد استفاده به صورت زیر است.


۱- 
تعداد مورد انتظار برخورد صاعقه با برق گیر که به Ng شناخته می شوند.

که در این فرمول:

Ng: حداکثر تعداد صاعقه هایی است که به واحد سطح در این منطقه برخورد می کند (تعداد صاعقه / کیلومتر مربع / سال)؛

و Ngman=2Ng


که می توان آن را به صورت زیر محاسبه نمود:

الف: استفاده از نقشه ی منطقه ی جغرافیائی


ب: استفاده از سطح ایزوکرونیک موج به Nk


که تقریباً برابر Nk/10 می شود.


محاسبه ی سطح (ایزوله) ساختمان بر حسب مترمربع Ae

در معرفی سطح زیر ساخت، همان تعداد صاعقه که به ساختمان اصابت می کند در نظر گرفته می شود.

در پیوست استاندارد NFC 17-100, 17-102 محاسبات و جداول مربوطه ارائه شده است.

ضریب بستگی به شرایط محیطی ساختمان دارد.


از نرم افزار ارائه شده توسط شرکت هلیتا محاسبات ریسک حریق ارائه شده است

همچنین این محاسبات در مجموعه های دیگر توسط سازندگان معروف ارائه گردیده است.

شرکت فرسFurse نیز مجموعه محاسباتی خود را با توجه به ساختمان ارائه کرده است.

بررسی تعداد قابل انتظار برخورد صاعقه به ساختمان NC: (تعداد قابل تحمل صاعقه)


در بررسی احتمال برخورد صاعقه از فرمول زیر استفاده می شود.


ضریب که بستگی به نوع ساختمان دارد.

ضریب که بستگی به اجزاء ساختمان دارد.

ضریب که بستگی به تجهیزات داخل ساختمان دارد.

ضریب که بستگی به آثار و نتیجه ی برخورد و صاعقه به ساختمان دارد.

همچنین از طریق نرم افزار قابل محاسبه است.


سطح حفاظتی PROTECTION LEVEL :

 

در این حالت مقادیر مقایسه شده اند.

اگر کوچک تر یا مساوی باشد، در نتیجه نیاز به اجباری کردن نصب برق گیر نیست.

اگر بزرگ تر از باشد،نیاز به سیستم صاعقه گیر با سطح حفاظتی است.


مقادیر سطح حفاظتی، شعاع حفاظت برق گیر را مشخص می کند.

فاصله ی ایمنی و پریود تعمیرات نیز توسط این سطح مشخص می گردد.


در بررسی نقشه مربوط به تعداد صاعقه در ایران بین صفر تا یک صاعقه (یک صاعقه /سال/ کیلومتر مربع) را می توان انتظار داشت.
مزایای برقگیر نوع اکسید فلزی (MOV)


۱- 
کارایی بهتر نسبت به سایر برقگیرها


۲- 
پراکندگی کم ولتاژ پسماند همچنین دارای ولتاژ پسماند خیلی کم

۳- دارای تاخیر زمانی خیلی کم

۴- برگشت طبیعی به وضعیت اولیه یا مدار باز

۵- دارای مشخصه ولت-جریان خطی تر از برقگیر SIC


۶- 
دارای سطح حفاظتی خوب

ضوابط نصب صاعقه گیر و چاه ارت مربوطه و هادی نزولی

 

 

Permanent link to this article: http://peg-co.com/home/%d8%b6%d9%88%d8%a7%d8%a8%d8%b7-%d9%86%d8%b5%d8%a8-%d8%b5%d8%a7%d8%b9%d9%82%d9%87-%da%af%db%8c%d8%b1-%d9%88-%da%86%d8%a7%d9%87-%d8%a7%d8%b1%d8%aa-%d9%85%d8%b1%d8%a8%d9%88%d8%b7%d9%87-%d9%88-%d9%87/

مديريت وبسايت بهروز عليخانی

روشهای تجربی جهت کاهش مقاومت چاه ارت

کاهش مقاومت ارت

مقدمه:

برای دستیابی به یک سامانه‌ی اتصال زمین کارآمد، بادوام و قابل اعتماد، باید جنبه‌های مختلفی، همچون طراحی، اجرا و انتخاب مصالح مناسب را مورد توجه قرار داد.

اما در میان تمامی بخش‌های مختلف این سامانه، چاه ارت از حساسیت و ویژگی‌های خاصی برخوردار است،

زیرا پس از اجرا امکان دسترسی مجدد به الکترود آن وجود ندارد.

و در صورت بروز اشکال، کار چندانی برای آن نمی‌توان کرد.

با عنایت به این که این بخش نقشی تعیین کننده در کارآمدی سامانه اتصال زمین دارد، می‌توان گفت مهم‌ترین و حساس‌ترین بخش سامانه، اتصال زمین است .

بنابر این طراحی و اجرای صحیح آن از اهمیت اساسی برخوردار است.

در حال حاضر متأسفانه کمبود منابع کاربردی در مورد سیستم ارتینگ احساس می‌شود.

این خود موجب رواج یافتن برخی شیوه‌های اشتباه و بروز اختلاف نظرهایی، به ویژه در زمینه‌ی اجرای چاه ارت شده است.

اغلب شاهد اجراهای نادرست و در نتیجه عدم دستیابی به مقاومت مناسب و یا بی‌دوام بودن چاه‌های اجراشده هستیم.

گاهی یک بی‌دقتی ساده در اجرای چاه باعث از دست رفتن کل هزینه‌ها و ناکارآمدی سیستم اتصال زمین میشود.

و در نتیجه ناایمن شدن شبکه‌ی برق و بروز پیامدهای ناگوار ناشی از آن را شاهد هستیم.

از این رو، شایسته است برای «اجرای چاه ارت» اهمیتی ویژه و جایگاهی خاص قائل شویم.

در نوشتار حاضر کوشیده‌ایم شناختی علمی و در عین حال ساده از مسائل اجرایی و عوامل مؤثر در کیفیت چاه ارت به دست داده و راهکارهایی مناسب و کاربردی برای اجرا و نیز حل مشکلات آن ارائه نماییم.

همچنین، نحوه‌ی کاربرد بنتونیت به عنوان یک الکترولیت خوب در چاه نشان داده شده است.

انتخاب بنتونیت از این جهت بوده که این ماده تأثیر فوق‌العاده مطلوبی در کاهش مقاومت چاه، کاهش هزینه‌ها و پایداری و دوام طولانی مدت چاه زمین دارد.


                        کاهنده مقاومت چاه ارت

 

مکمل کاهنده چاه ارت محصولی جدید و فوق العاده موثر در کاهش مقاومت چاه ارت

                               ((قیمت هر گالن ۸۵/۰۰۰ تومان))

                  محصول شرکت پیشرو الکتریک غرب

 


عوامل مؤثر بر مقاومت چاه

۱- یخ‌زدگی و خشکی خاک

می‌دانیم که هدایت الکتریسیته در فلزات ناشی از جابه‌جایی الکترون‌هاست.

و در این عناصر هسته‌های اتم‌ها در جای خود می‌مانند و جابه‌جا نمی‌شوند.

ولی در غیرفلزاتی مانند خاک، قضیه به شکل دیگری‌ است.

در این مواد هدایت الکتریسیته ماهیت شیمیایی داشته و از املاح یونیزه شده‌ی موجود در آن‌ها سرچشمه می‌گیرد.

همچنین، می‌دانیم که عبور جریان توسط یون‌ها مستلزم حرکت و جابه‌جایی آن‌هاست.

حال با توجه به این که یک یون، کل اتم را شامل می‌شود و اتم‌های مواد جامد قادر به جابه‌جایی نیستند، خاک نیز در حالت جامد قادر به هدایت جریان برق نیست.

ولی هنگامی که مقداری آب جذب خاک شود، املاح خاک، در این رطوبت حل و سپس یونیزه شده و آنگاه می‌توانند عمل هدایت الکتریکی را انجام دهند.

به همین دلیل، خاک‌های خشک یا یخ‌زده قادر به هدایت نبوده و مقاومت بسیار زیادی از خود نشان می‌دهند.

بر همین اساس، هنگام تعیین عمق چاه، می‌باید به امکان یخ زدن سطح خاک در زمستان و خشک شدن آن در تابستان توجه کرد.

و با در نظر گرفتن آب و هوای منطقه، عمق مؤثر چاه را از سطحی که امکان یخ زدن و خشک شدن ندارد، به پایین در نظر گرفت.

این موضوع به ویژه در اتصال زمین‌های افقی (شبکه‌ها یا مش‌های ارت که در عمق کمی اجرا می‌شوند) درخور توجه است.

۲- فشردگی خاک

می‌دانیم که خاک از دانه‌هایی با اندازه‌های مختلف تشکیل شده است .

این دانه‌ها در خاک‌های دست نخورده، معمولاً به همدیگر فشرده شده و توده‌ای متراکم را به وجود می‌آورند.

در این توده‌های متراکم، دانه‌های خاک در همدیگر فرو رفته و فضای تهی قابل توجهی میان خودشان باقی نمی‌گذارند.

بنابراین، سطح تماس بین دانه‌ها زیاد بوده و در نتیجه مقاومت الکتریکی کمی ایجاد می‌شود.

در حالی که در خاک‌های دستی و نامتراکم، فضاهای خالی زیاد بین دانه‌های خاک، سطح تماس کمی ایجاد می‌کند.

و به همین دلیل مقاومت الکتریکی زیادی پدید می‌آید.

نکته‌ی دیگر این که هر چه دانه‌های خاک درشت‌تر باشند، فاصله‌های خالی بیش‌تری بین آن‌ها به وجود آمده و مقاومت الکتریکی را افزایش می‌دهد.

اکنون نکته‌ی بسیار مهم دیگری را مورد توجه قرار می‌دهیم و آن این که اثر مقاومت ویژه‌ی خاک‌های نزدیک و اطراف الکترود ارت در مقاومت چاه، بسیار بیش‌تر از اثر خاک‌های دور از آن است.

توجه به این دو مطلب مهم نشان می‌دهد که اجرای چاه ارت در زمین دست نخورده اهمیت فوق‌العاده‌ای دارد.

و در صورت دستی بودن خاک‌های سطحی، چاره آن است که نخست آن قدر پایین برویم تا به زمین دست نخورده برسیم .

سپس کندن چاه را در زمین دست نخورده، به اندازه‌ی کافی ادامه دهیم.

بدیهی است که تنها آن بخش از چاه که در خاک دست نخورده قرار دارد، ارزشمند و مؤثر است.

لذا عمق مؤثر چاه نیز برابر ارتفاع همان بخش است.

دقیقاً به همین دلیل است که در هنگام اجرای چاه ارت باید الکترولیت اطراف الکترود را به خوبی کوبیده و متراکم نمود.

زیرا این کار در کاهش مقاومت چاه، اثر فراوان دارد.

با توجه به این که سیم متصل به الکترود ارت (که تا سطح خاک بالا می‌آید) نیز مانند یک الکترود میله‌ای عمل نموده و در کاهش مقاومت کلی چاه مؤثر است .

کوبیدن خاک‌های لایه‌های بالاتر از الکترود (اطراف سیم ارت) نیز می‌تواند در کاهش مقاومت چاه مؤثر باشد.

و هر چه آن‌ها را بیش‌تر کوبیده و متراکم کنیم، نتیجه‌ی بهتری حاصل می‌شود.

در این جا برخی خواص ارزشمند خاک بنتونیت به عنوان الکترولیت مشخص می‌شود.

دانه‌بندی این خاک فوق‌العاده ریز بوده و دارای خاصیت تورمی شدیدی است.

بنتونیت در اثر تورم ناشی از آب‌گیری، تمامی خلل و فرج موجود میان دانه‌های خود را پُرکرده و به تمام سطوح پیراونی نیز فشرده می‌شود.

همین موضوع یکی از دلایل پایین بودن مقاومت الکتریکی چاه‌های بنتونیتی‌ است.

از سوی دیگر، این توده‌ی متراکم نیاز به کوبیدن ندارد و در نتیجه اجرای آن آسان است.

مقاومت حاصل از آن، بر خلاف الکترولیت‌هایی از قبیل ذغال و نمک، وابسته به چگونگی اجرا و دقت در کوبیدن الکترولیت نیست.

۳- رطوبت و آب

همان گونه که در تشریح اثر یخ‌زدگی گفته شد، هدایت الکتریسیته در خاک ماهیت شیمیایی داشته و از املاح حل شده در رطوبت خاک سرچشمه می‌گیرد.

بنابراین، هرچه رطوبت بیش‌تری در خاک موجود باشد، املاح بیش‌تری در آن حل شده و جابه‌جایی یون‌ها نیز بهبود می‌یابد.

بنابراین، میزان هدایت آن نیز افزایش می‌یابد.

در اینجا سوالی پیش می آید و آن این است:

که چرا برخلاف انتظار، آندسته از خاک‌های سطحی یا زیرزمینی که به طور دائم در معرض رطوبت فراوان قرار دارند (مانند بستر جوی‌ها و رودخانه‌ها) دارای هدایت کمی هستند؟

جواب این است:

زیرا آب و رطوبت بسیار زیاد موجود در این خاک‌ها، به تدریج و به مرور زمان، املاح و حتی دانه‌های ریز این خاک‌ها را شسته و با خود به جاهای دیگر برده است در نتیجه هدایت آن‌ها به دلیل فقر املاح، اندک است.

پس با افزایش رطوبت خاک، هدایت آن افزایش می‌یابد؛ ولی هنگامی که مقدار این رطوبت بسیار زیاد شود، ‌میزان هدایت کاهش خواهد یافت.

پیش از این گفته شد که اثر مقاومت ویژه‌ی خاک‌های نزدیک و اطراف الکترود ارت در مقاومت چاه، بسیار بیش‌تر از اثر خاک‌های دور از آن است.

بنابراین، بهتر است چاه ارت را آن قدر بکنیم تا به خاک مرطوب که دارای مقاومت کمی‌ست، برسیم.

سپس درون خاک مرطوب نیز تا اندازه‌ای حفاری را ادامه بدهیم.

به این ترتیب، الکترود ارت در محاصره‌ی خاکی کم مقاومت قرار خواهد گرفت.

به ویژه قابل توجه است که افزایش عمق چاه از یک سو موجب کاهش مقاومت آن شده و از سوی دیگر در اعماق بیش‌تر معمولاً درصد رطوبت نیز افزایش یافته و به شکلی مضاعف موجب کاهش مقاومت الکتریکی آن می‌شود.

ولی هرگز نباید کار را تا رسیدن به سفره‌های آب زیرزمینی ادامه داد؛ زیرا همان گونه که گفته شد، این کار اثر معکوس دارد.

۴- فاصله‌ی چاه‌ها از یکدیگر

معمولاً تعداد و فاصله‌ی چاه‌های ارت و محل احداث آن‌ها، با توجه به مقاومت موردنظر، از سوی طراح محاسبه و تعیین می‌شود.

ولی به دلیل آن که فرمول‌های محاسبه‌ی مقاومت چاه ارت اصولاً با فرض همگن بودن خاک نوشته شده‌اند و در عمل با خاک‌ها و زمین‌های غیرهمگن مواجه‌ایم اکثرا محاسبات با خطا روبرو میشوند.

همچنین به علت وجود برخی موانع و دشواری‌های اجرایی، ممکن است مقاومت عملی چاه‌ها با مقدار محاسبه شده تفاوت داشته باشد.

لذا ممکن است پس از اجرا (به منظور کاهش مقاومت) نیاز به اضافه کردن چاه جدید داشته باشیم.

و گاهی نیز حین اجرای طرح، به دلیل وجود موانع عملی از قبیل وجود صخره یا لاشه‌های بزرگ بتنی در محل طراحی شده، ناگزیر از تغییر محل آن شویم.

از این رو، لازم است محل‌های جدیدی برای احداث چاه در نظر گرفته شود.

به همین دلیل مهندس ناظر می‌باید به نکات حائز اهمیت در جانمایی چاه ارت مسلط باشد.

یکی از نکات مهم در این کار، رعایت فاصله‌ی لازم میان چاه‌هاست.

می‌دانیم که هر چاه ارت دارای محدوده‌ای در اطراف خود می‌باشد که در هنگام بروز خطا و جاری شدن جریان در الکترود ارت، دارای ولتاژ خواهد شد.

این محدوده، حوزه‌ی مقاومت (Resistance Area) نامیده می‌شود.

نکته‌ی مهم این است که دو چاه ارت تا حد ممکن از هم دور باشند و یا فاصله‌ی آن‌ها دست کم به اندازه‌ای باشد که حوزه‌های مقاومت آن‌ها هم‌پوشانی نداشته باشند.

رعایت نشدن این نکته مشکلات زیر را به وجود می‌آورد:

الف) در صورتی که دو چاه برای دو شبکه‌ی مستقل از هم به کار روند (مثلاً یکی برای ارت فشار ضعیف ترانسفورماتور و دیگری برای ارت فشار قوی آن)، هنگام بروز خطا در یکی از شبکه‌ها، ارت شبکه‌ی دیگر نیز برق‌دار خواهد شد و این موضوع می‌تواند بسیار خطرناک باشد.
ب) در صورتی که دو چاه به یکدیگر متصل شده و هر دو برای یک سامانه به کار روند، رعایت نشدن حداقل فاصله باعث می‌شود که پس از متصل کردن دو چاه به یکدیگر، کاهش مورد نظر در مقاومت کل به دست نیامده و مقاومت حاصل شده، بیش‌تر از حد انتظار شود(از قوانین چاههای پارالل تبعیت نکند).

ابعاد حوزه‌ی مقاومت بستگی به مقاومت ویژه‌ی خاک و عمق چاه دارد.

هر چه مقاومت ویژه‌ی خاک بیش‌تر باشد و یا عمق چاه افزایش یابد، حوزه‌ی مقاومت بزرگ‌تر می‌شود.

به طور کلی برای چاه‌هایی که به هم متصل شده و ارت واحدی را تشکیل می‌دهند، این فاصله نباید کم‌تر از ۶ متر باشد.

و برای دو چاه که متعلق به دو سامانه‌ی مختلف می‌باشند، این فاصله نباید کم‌تر از ۲۰ متر یا دو برابر عمق چاه (هر کدام که بیش‌تر بود) بشود.


انواع الکترودها

اکنون که تأثیر عوامل مختلف بر مقاومت چاه ارت شرح داده شد، به تشریح رایج‌ترین انواع الکترودها می‌پردازیم:

۱- الکترود میله‌ای

این نوع الکترود به دو دسته تقسیم می‌شود:

الف) الکترود میله‌ای نوع اول

این الکترود معمولاً یک میله‌ی فولادی نوک‌تیز است که بدنه‌ی آن گالوانیزه شده و یا آن را با لایه‌ای از مس پوشانده‌اند تا دوام آن در زیر خاک افزایش یافته و از پوسیده شدن سریع آن جلوگیری شود.

برای نصب این الکترود نیازی به حفر چاه نیست و آن را در زمین دست نخورده به طور عمودی می‌کوبند.

ساختار آن نیز برای کوبیدن طرح شده است.

مغز فولادی آن سخت و محکم بوده و با وارد شدن ضربه، در خاک فرو می‌رود.

انتهای سخت میله نیز قادر به تحمل ضربه‌های چکش است.

گاهی نیز یک قطعه‌ی فولادی بسیار سخت را به انتهای میله متصل می‌کنند تا از تغییر فرم آن در اثر ضربه‌های چکش جلوگیری شود.

نوک میله را نیز برای فرورفتن بهتر، تیز کرده‌اند و یا یک قطعه فولادی نوک تیز و سخت به سر آن متصل نموده‌اند.

طول این میله‌ها حدود ۱/۵ تا ۳ متر است.

میله‌های بلندتر ممکن است به هنگام کوبیده شدن در زمین‌های سخت، کج شوند.

گاهی این میله‌ها را طوری می‌سازند که بتوان پس از کوبیدن یک میله، به کمک یک قطعه‌ی واسطه، میله‌ی دوم را به ته آن متصل کرد و کوبیدن را ادامه داد.

سپس میله‌ی سوم را به همان روش به ته میله‌ی دوم متصل و این عمل را تکرار می‌کنند.

به این ترتیب، با اتصال میله‌های متعدد می‌توان الکترود بلندتری به دست آورد و آن را بدون کج شدن تا عمق‌ بیش‌تری در زمین فرو کرد.

منتها این اشکال وجود دارد که همین قطعات واسطه که ساختار آن‌ها شبیه پیچ و مهره است، اغلب تحمل ضربه‌های لازم برای فروکردن میله در زمین‌های بسیار سخت را ندارند.

این قطعات در اثر ضربه ممکن است لق شده و اتصال میان میله‌ها دچار اشکال شود.

از این رو الکترود میله‌ای نوع اول بیش‌تر مناسب کوبیدن در خاک‌های نرم یا در زمین‌هایی‌ست که رطوبت در نزدیکی سطح آن قرار دارد.

کوبیدن این الکترود در زمین‌های سخت، ‌حتی در همان عمق کم نیز خالی از دردسر نیست.

مهم‌ترین حسن این نوع الکترود، آسانی اجرا و ارزان بودن آن است.

زیرا هزینه‌ی حفر چاه و خرید الکترولیت را ندارد و قیمت آن هم ارزان است.

اما اساساً مقاومت بیش‌تری نسبت به الکترود صفحه‌ای دارد.

از همین رو، برای حصول مقاومت کم باید چند عدد از آن‌ها را نصب و به همدیگر متصل کرد.

اما با توجه به لزوم رعایت فاصله‌ی مجاز میان الکترودها، به زمینی بزرگ نیاز است.

بنابراین، به دست آوردن مقاومت کم در یک زمین کوچک به کمک این نوع الکترود، مشکل است.

ضمن آن که افزایش بیش از حد تعداد الکترودها می‌تواند هزینه‌ی تهیه‌ی سیم و ترانشه‌کنی مورد نیاز برای ارتباط دادن آن‌ها و نیز هزینه‌ی اتصال سیم‌های ارتباطی به الکترودها را افزایش داده و مزیت اقتصادی استفاده از این نوع الکترود را از بین ببرد.

این میله‌ها در طول‌های از ۱/۵ تا ۳ متر و قطرهای ۱۶، ۱۹ و ۲۵ میلی‌متر ساخته می‌شوند.

قطر میله تأثیر چندانی در مقاومت ارت حاصل از آن ندارد و با افزایش قطر، صرفاً استحکام مکانیکی میله افزایش می‌یابد و می‌توان آن را برای زمین‌های سخت‌تر به کار بُرد.

این میله‌ها باید مشخصه‌های زیر را دارا باشند:

۱- ضخامت لایه‌ی گالوانیزه نباید کم‌تر از ۷۰ میکرون باشد.

چون ایجاد لایه‌ای با قطر ۷۰ میکرون با روش گالوانیزاسیون سرد (الکترولس) امکان‌پذیر نیست، حتماً باید از روش گالوانیزاسیون گرم استفاده شود.

۲- ضخامت میله‌ی فولادی نباید کم‌تر از ۱۶ میلی‌متر باشد.

۳- سطح مقطع روکش مسی نباید کم‌تر از ۲۰ درصد سطح مقطع مغز فولادی باشد.

۴- حداقل خلوص مس مورد استفاده برابر ۹۹/۹ درصد باشد (مس کاتد).

۵- لایه‌ی مسی باید به روش جوش مولکولی (آب‌کاری الکتریکی) روی بدنه‌ی میله قرار گیرد.

در بازار اغلب میله‌های ارزان قیمتی به فروش می‌رسد که با فروکردن یک میله‌ی فولادی درون یک لوله‌ی مسی هم اندازه با آن ساخته شده‌اند.

این الکترودها دارای عیوب زیر می‌باشند و به کارگیری آن‌ها توصیه نمی‌شود.

عیب یکم:

در اثر وجود فواصل ذره‌بینی میان روکش مسی و مغز فولادی، رطوبت و املاح خاک به این فواصل نفوذ کرده و پیل الکتریکی تشکیل می‌دهند که موجب خوردگی سریع میله می‌گردد.

عیب دوم:

به علت یکپارچه نبودن روکش مسی و مغز فولادی آن، در موقع کوبیدن میله ممکن است روکش مسی جدا شده و همراه میله در خاک فرو نرود.

عیب سوم:

هنگام ساخت این الکترودها، میله‌ی فولادی تا دمای زیادی داغ می‌شود و این موضوع می‌تواند بر روی خواص متالورژیک میله تأثیر گذاشته و از استحکام آن بکاهد و در نتیجه گاه شاهد کج شدن الکترود در هنگام کوبیدن آن خواهیم بود.

شایان ذکر است که رعایت نشدن نکات فوق موجب پوسیدگی سریع و زودتر از موعد الکترود خواهد شد.

ب) الکترود میله‌ای نوع دوم

نوع دوم الکترود میله‌ای برای نصب در چاه‌های کنده شده با دستگاه حفاری به کار می‌رود.

این نوع الکترود را در چاه قرار داده و اطرافش را با الکترولیتی مناسب (مثلاً دوغاب بنتونیت) پُر می‌کنند.

در این حالت نیازی به میله‌ای محکم با مشخصات نوع اول نیست و به جای آن می‌توان از سیم یا تسمه‌ی مسی یا گالوانیزه و یا حتی از لوله‌ی گالوانیزه آب نیز استفاده کرد.

استفاده از این نوع الکترود در چاه‌های کنده شده با دست، به علت زیاد بودن عرض چاه و نیاز به مقدار زیاد الکترولیت توصیه نمی‌شود.

مهم‌ترین حُسن این روش آن است که بر خلاف روش نخست می‌توان با عمیق‌تر کردن چاه، ‌الکترود را تا عمق دلخواه در زمین وارد کرد و مقاومت آن هم به دلیل عمق بیش‌تر و استفاده از الکترولیت، کم‌تر از روش نخست می‌باشد.

در عوض، هزینه‌های حفر چاه و خرید الکترولیت به سایر هزینه‌ها افزوده می‌شود.

مشخصات مهمی که این الکترودها باید داشته باشند، عبارت‌اند از:

۱- حداقل ضخامت تسمه‌ی مسی ۲ میلی‌متر و حداقل سطح مقطع آن ۵۰ میلی‌متر مربع باشد.

۲- حداقل سطح مقطع سیم مسی چند مفتولی ۳۵ میلی‌متر مربع و حداقل قطر هر مفتول آن ۱/۸ میلی‌متر باشد.

۳- حداقل خلوص مس مورد استفاده برابر ۹۹/۹ درصد باشد. (مس کاتد)

۴- حداقل ضخامت تسمه‌ی فولادی (گالوانیزه) ۳ میلی‌متر و حداقل سطح مقطع آن ۱۰۰ میلی متر مربع باشد.

۵- ضخامت لایه‌ی گالوانیزه نباید کم‌تر از ۷۰ میلی‌متر باشد. استفاده از گالوانیزاسیون گرم برای این نوع الکترود نیز اجباری‌ست.

۶- قطر لوله‌ی گالوانیزه نباید کم‌تر از in1 (یک اینچ) باشد.

دوباره تأکید می‌شود که رعایت نشدن نکات فوق، موجب پوسیدگی سریع و زودتر از موعد الکترود خواهد شد.


۲- الکترود صفحه‌ی مسی

این الکترود یک صفحه‌ی مسی مربع شکل است که در موقع نصب، آن را به طور افقی یا عمودی در چاه قرار داده و در میان الکترولیت مناسبی دفن می‌کنند.

در بین الکترودهای مختلف، گران‌ترین نوع محسوب می‌شود.

زیرا وزن مس مورد نیاز برای ساخت آن بیش از سایر الکترودهاست و همچنین نیاز به حفر چاه و مقدار بیش‌تری الکترولیت دارد.

در عوض مقاومت کم‌تری ایجاد می‌کند و از این راه تعداد چاه مورد نیاز برای رسیدن به یک مقاومت معین را کاهش می‌دهد.

که این خود، موجب صرفه‌جویی در هزینه‌های حفر چاه و تأمین سیم‌های ارتباطی میان چاه‌ها و اتصال آن‌ها به الکترودها و ترانشه‌کنی‌های مورد نیاز می‌شود،

از این رو، بسته به مشخصات زمین، در بعضی موارد اقتصادی‌تر از الکترودهای میله‌ای خواهد بود.

از سوی دیگر، در زمین‌های کوچک که امکان حفر چاه‌های متعدد وجود ندارد و با توجه به این که مقاومت سامانه‌ی احداث شده نباید از حد معینی بیش‌تر باشد، ممکن است تنها راه احداث سامانه‌ی اتصال زمین، استفاده از این نوع الکترود باشد.

مشخصاتی که لازم است این الکترود داشته باشد، به شرح زیر است:

۱- طول و عرض آن، حداقل cm50×۵۰ باشد.

۲- قطر آن از ۲ میلی‌متر کم‌تر نباشد.

۳- خلوص مس مورد استفاده حداقل برابر ۹۹/۹ درصد باشد. (مس کاتد)

توجه شود که رعایت نشدن نکته‌ی ردیف ۱ موجب افزایش مقاومت چاه شده و بی‌توجهی به ردیف‌های ۲ و ۳ موجب پوسیدگی سریع و زودتر از موعد الکترود خواهد شد.

متأسفانه در حال حاضر، صفحات مسی آلیاژی که مناسب استفاده در زیر خاک نمی‌باشند، به طور وسیعی مورد استفاده قرار می‌گیرند.

همچنین صفحات فولادی پوشیده شده با مس را فقط به شرطی می‌توان به جای صفحه‌ی مسی به کار بُرد که ضخامت لایه‌ی مس روی آن از حداقل‌های لازم، کم‌تر نباشد.


هادی یا سیم ارت

پس از شرح انواع الکترود، اینک به بیان جزئیات مهم در انتخاب و استفاده از هادی ارت می‌پردازیم.

نخست هادی‌های ارت را از نظر محل استفاده به دو دسته تقسیم می‌کنیم.

دسته‌ی اول:

هادی‌هایی که در زیر زمین و در تماس با خاک قرار می‌گیرند.

دسته‌ی دوم:

هادی‌هایی که روی زمین قرار گرفته و با خاک تماس ندارند.

این طریقه‌ی دسته‌بندی از آن روست که انتخاب جنس هادی ارت و همچنین منظور کردن روکش و عایق برای آن، به محل استفاده بستگی دارد.

چون در این نوشته توجه خود را بر آن قسمت از شبکه‌ی ارت که در زیر خاک قرار گرفته، معطوف نموده‌ایم، صرفاً به بررسی مسائل دسته‌ی اول می‌پردازیم:

نخست این که هادی ارت در زیر خاک نیاز به روکش نداشته و لخت بودن آن موجب تماس بیش‌تر با خاک و کاهش مقاومت کلی شبکه‌ی ارت می‌شود.

و دیگر این که در زیر خاک به علت دخالت عوامل خورنده از قبیل رطوبت و املاح خاک، عمر هادی ارت کوتاه شده و زودتر از بین خواهد رفت.

مسأله‌ی خوردگی به ویژه در هنگام تشکیل پیل‌های گالوانیک بسیار جدی و خطرناک می‌شود.

در این وضعیت، در اندک زمانی هادی ارت نابود خواهد شد.

هادی ارت می‌تواند به صورت سیم یا تسمه بوده و از جنس مس یا فولاد گالوانیزه ساخته شود.

مشخصات ذکر شده در ردیف‌های ۱ تا ۵ الکترود میله‌ای نوع دوم در مورد این هادی‌ها نیز صدق می‌کند.

بدیهی‌ست هادی و الکترود ارت می‌باید هم جنس باشند تا از تشکیل پیل و گالوانیک و خوردگی‌های ناشی از آن جلوگیری شود.

شایان ذکر است که متأسفانه در حال حاضر سیم‌های مس آلیاژی که در اصل برای استفاده در خطوط هوایی برق ساخته شده‌اند، به جای سیم مسی خالص در چاه‌های ارت به کار بُرده می‌شوند.

که این عمل اشتباه، دوام هادی ارت را تحت تأثیر قرار داده و از عمر آن می‌کاهد.


روشها و نکات کلیدی جهت کاهش مقاومت چاه ارت:

الف) استفاده کردن از چند الکترود به جای یک الکترود

استفاده از یک الکترود علاوه بر سادگی از نظر اقتصادی نیز مقرون به صرفه است.

اما در بعضی مواقع یک الکترود نمی تواند مقاومت مطلوب را تامین کند،

بنابراین میتوانیم از چند الکترود استفاده نماییم.

اگر الکترود ها را به صورت آرایش مربعی قرار دهیم بطوری که تمام الکترود ها را به وسیله کابلی به یکدیگر متصل نماییم،میتوان تا حدی به مقاومت مورد نظرمان برسیم.

دلیل استفاده از آرایش مربعی این است که به الکترود ها فضای مساوی اختصاص می یابد.

 ب) استفاده از مواد شیمیایی برای کم کردن مقاومت الکترود زمین

در مواردی که نوع خاک منطقه به نحوی است که الکترود احداث شده در آن دارای مقاومتی بیش از حد معمول شود با استفاده از مواد شیمیایی مجاز می توان از مقدار مقاومت زمین کاست.

عمل آوردن خاک به این ترتیب، در مورد الکترودهای دفن شده به صورت افقی، قابل اجرا نمی باشد.

مواد شیمیایی مورد استفاده نباید دارای خاصیت خورندگی الکترود یا آلایندگی بیش از حد محیط زیست باشند.

از انواع موادی که در عمل بیش از همه مرورد مصرف می باشند، عبارت است از:

-نمک طعام (سنگ)

-سولفات منیزیم

-سولفات مس

-خاکه ذغال چوب یا کک مخلوط با نمک

از مواد ذکر شده در بالا خاصیت خورندگی سولفات منیزیم کمتر ازهمه و نمک طعام ارزان تر از همه است.

به نظر می رسد مناسب ترین روش کم کردن مقاومت، همان روش معمولی یعنی استفاده از مخلوط یا لایه بندی خاکه ذغال و نمک طعام سنگ باشد.

مواد دیگری که برای کاهش مقاومت زمین به کار می رود عبارتند از:

– پلیمرهای جاذب رطوبت

بنتونیت

– مارکونیت

-GEM

 


پلیمرهای جاذب رطوبت:

یکی از جدیدترین روش های کاهش مقاومت زمین استفاده از پلیمرهای جاذب رطوبت می باشد.

این مواد نسبت به انواع دیگر مواد کاهش دهنده مقاومت خاک، وابستگی کمتری به شرایط جوی و محیطی دارند.

همچنین از خوردگی الکترود نیز جلو گیری می نماید.

انواع مختلفی از این پلیمر ها هم به صورت مصنوعی و هم به شکل طبیعی موجود می باشند.

ولی برای سیستم های ارتینگ، پلیمری مناسب است که در برابر فعالیت های میکروارگانیسمی موجود در آب از خود مقاومت بیشتری نشان دهد.

و در مقابل شرایط آب و هوایی و درجه حرارت خاصیت جذب رطوبت خود را حفظ کند و همیشه اطراف الکترود را مرطوب نگه دارد.

بنتونیت:

بنتونیت ماده ای طبیعی و کمی اسیدی می باشد.

بنتونیت رس قهوه ای کمرنگی است که به مقدار ۵ برابر وزن خود می تواند آب جذب نماید.

و پس از آن تا ۳۰ برابر حجم اولیه اش فضا اشغال می کند.

اسم شیمیایی آن سدیم مونتموربنتونیت می باشد.

وقتی که در محلی قرار بگیرد می تواند رطوبت را از خاک جذب نماید.

و این دلیل اصلی استفاده از آن در اتصال به زمین می باشد.

پر واضع است که بتونیت به تثبیت مقاومت اتصال زمین در طی سال کمک شایانی می نماید.

مقاومت مخصوص این ماده کم و در حدود ۵ اهم متر می باشد.

هر چند در شرایط آب و هوایی خشک ممکن است باعث ایجاد شکاف های در الکترود زمین بشود.

بنتونیت دارای خاصیت نیکسترویی نیز می باشد.


مارکونیت:

مارکونیت ذاتا یک بتون رسانا است که در آن ترکیبات کربن دار جایگزین ترکیبات طبیعی استفاده شده در مخلوط بتن شده است.

مارکونیت با فلزات معینی موجب خوردگی کمی می شود.

توسعه فرایند آن از سال ۱۹۶۲ شروع شد.

وقتی که تیم مهندسین مارکونی ماده ای را کشف کردند که جریان الکتریسیته را ازطریق الکترون های آزاد(به جای یون ها) و خیلی بهتر عبورمی داد.

این ماده کربن داربه شکل بلوری بوده و توسط موادی حاوی مقدار کمی سولفوروکلرید پوشانده شده است.

در مدتی که مارکونیت به شکل ژله ای می باشد کمی باعث خوردگی فلزات آهن و مس می شود.

ولی هنگامی که بتون سفت می شود نه تنها خوردگی متوقف می گردد بلکه به عنوان یک لایه محافظ از الکترود زمین درمقابل مواد شیمیای دیگر محافظت می کند.

وقتی که مارکونیت با بتون مخلوط می شود، مقاومت مخصوص آن به کمتر از ۰.۱ اهم متر می رسد.

مارکونیت رطوبتش را حتی در شرایط آب و هوایی خشک حفظ می کند.

و در آب و هوای خشک می تواند جانشین خوبی برای بنتونیت باشد.

GEM

ماده ای است کربن دار که برای سیستم های اتصال به زمین استفاده می شود.

مقاومت مخصوص این ماده ۰.۱۲ تا ۰.۱۸ اهم متر است و در مناطق خشک به خوبی می توان از آن استفاده کرد.

این ماده قابلیت حل شدن بسیار پایینی دارد.

تجزیه هم نمی شود و بر اثر مرور زمان فرسایش نمی یابد.

به شارژ منظم و جایگزینی ممتد نیز نیازی ندارد.

مشخصات شیمیایی و فیزیکی این ماده به شرح زیر است:

*قابلیت حل شدن آن در آب بسیار ناچیز است.

*چگالی این ماده ۰.۹ است.

*دارای نقطه ذوب ۳۵۰۰ درجه سانتیگراد است.

*پودر بی بوی خاکستری رنگی است.

این ماده حاوی سولفورو است که بصورت Nuisance Dust در این ماده وجود دارد.

و باید هنگام استفاده از آن حتما از ماسک های مخصوصی استفاده کنیم .

قبل از مصرف این ماده باید کاملا خشک باشد.

این ماده از راه پوست نیز قابل جذب است.

بنابراین پیشنهاد می شود در هنگام مصرف حتما مسائل ایمنی بطور کامل رعایت شود.

مواد دیگری هم وجود دارند که به علت بالا بودن نسبی بهای آنها نسبت به موادی مانند نمک، مورد توجه قرار داده نشده اند.


چگونگی کاهش مقاومت خاک توسط مواد کاهش‌دهنده مقاومت خاک:

مواد کاهش‌دهنده مقاومت زمین، دارای مقاومت ویژه بسیار کمی هستند.

همچنین این موارد دور الکترود پیچیده شده و باعث افزایش سطح ظاهری آن میشوند.

و به علت مقاومت ویژه کم باعث کاهش مقاومت الکترود می شوند.

مواد کاهش‌دهنده مقاومت زمین با داشتن ذرات ریز در میان خلل و فرج خاک پر میشوند.

و به دلیل دارا بودن قابلیت جذب رطوبت و انبساط بالا، سطح تماس الکترود و زمین را افزایش می دهند.

 هنگامی که در اطراف الکترود از مواد کاهش‌دهنده مقاومت زمین استفاده می شود در اطراف الکترود مایع الکتریسیته‌دار شروع به حرکت می کند.

که این حرکت باعث ایجاد لایه‌ای در اطراف الکترود می شود که به آن لایه، لایه Permeation می گویند.

یکی از مهمترین عوامل کاهش مقاومت خاک همین لایه Permeation است.


نتیجه:

مهمترین موضوعی که باید در طراحی و انتخاب اتصال زمین مد نظر قرار گیرد شرایط آب و هوایی محیط می باشد.

طراح اتصال به زمین باید با توجه به شرایط محیطی و اتصال زمین نصب شده، دوره ی زمانی اندازه گیری مقاومت زمین را برای بهره بردار مشخص کند.

موضوعی که در حال حاضر جایگاهی در طراحی شبکه های ارت ندارد.

امروزه پیشرفت تکنولوژی یک محدودیت عمده به نام توسعه پایدار بر سر راه خود دارد.

آسایشی که تکنولوژی به انسان امروزی تقدیم می کند در مقابل مشکلاتی که برای او به وجود می آورد قابل ملاحضه نیست.

بنتونیت به عنوان یک ماده طبیعی مشکلات مذکور را برای محیط زیست به همراه نخواهد داشت.

از طرف دیگر قدرت جذب رطوبت بالا آن را به یک ماده مناسب برای کاهش مقاومت اتصال زمین تبدیل کرده است.

ولی موضوعی که باید مد نظر باشد این است که بنتونیت می تواند در شرایط آب و هوایی خشک آسیب های جدی به الکترود زمین وارد سازد.

با توجه به تحقیقات انجام شده و شرایط آب و هوایی ایران استفاده از موادی مانند:

مارکونیت

ultrafill

 gem

و پلیمر های جاذب رطوبت

به علت کاهش مقاومت مناسب و پایداری در برابر شرایط جوی و عدم خوردگی الکترود، به جای سیستم های اتصال زمین فعلی توصیه می شود.

منابع:

news.tavanir.org.ir

۱۰۰۱daneshjo.ir

vivan-co.com

ekahroba.com

Permanent link to this article: http://peg-co.com/home/%d8%b1%d9%88%d8%b4%d9%87%d8%a7%db%8c-%d8%aa%d8%ac%d8%b1%d8%a8%db%8c-%d8%ac%d9%87%d8%aa-%da%a9%d8%a7%d9%87%d8%b4-%d9%85%d9%82%d8%a7%d9%88%d9%85%d8%aa-%da%86%d8%a7%d9%87-%d8%a7%d8%b1%d8%aa/

مديريت وبسايت بهروز عليخانی

انواع دکلهای صاعقه گیر و مخابراتی

انواع دکلهای صاعقه گیر و مخابراتی

دکل‌ خودایستا:

دکل‌های خودایستا اصطلاحا به دکل‌هایی گفته می‌شود که دارای ۳ یا ۴ پایه بوده و پایه ‌ها با اعضای خرپایی به گونه ای به هم متصل می‌شوند که هر چه به ارتفاع دکل افزوده می شود از اندازه اضلاع آن کاسته می شود.

به نوعی که این دکل ها تنها بر روی پایه های خود استوار هستند و از این رو خود ایستا نامیده می شوند.

دکل‌ خودایستای چهارپایه:

این نوع دکل‌ها به صورت چهار پایه بوده که معمولاًَ تمام قطعات دکل از نبشی ساخته می‌شود که بوسیله پیچ و مهره به یکدیگر متصل می شوند.

این دکل‌ ها برای بارهای زیاد و معمولاً برای ارتفاع‌ های بلند تر از ۲۴ متر استفاده می‌شود.

دکل‌ خودایستای سه پایه:

دکل‌های خودایستا سه پایه دکل‌ هایی هستند که به صورت مشبک بوده و دارای سه پایه می ‌باشد.

پایه ‌ها اکثرا از لوله و اعضای داخلی به صورت خرپایی از نبشی ساخته می‌شود.

در ساخت پایه‌ها از نبشی، نبشی ۶۰ درجه، میل گردهای توپر، پروفیل ‌های خمکاری شده و… نیز استفاده می‌شود.

اعضای داخلی ( بریس‌ها ) از نبشی، لوله و میلگرد ساخته می‌شود.

این نوع دکل‌ ها برای نصب آنتن های ماکروویو، آنتن های موبایل و بی سیم استفاده می‌شود.

صاعقه گیر اکتیو آذرخش(قابل نصب بر روی دکل خود ایستا و مهاری)

قیمت صاعقه گیر اکتیو آذرخش

دکل‌های مهاری:

دکل‌های مهاری به دکل‌هایی گفته می‌شود که بوسیله سیم مهار به زمین یا تکیه گاه دیگری مهار گردند.

مزیت عمده این نوع دکل‌ها وزن پایین آنها می باشد.

اغلب در شبکه تلفن همراه، شبکه‌های بی سیم شهری مورد استفاده قرار می‌گیرند.

این دکل‌ ها قابلیت نصب در پشت بام منازل و ادارات را داشته و در زمان هایی که نیاز به ارتفاعی بیش از ارتفاع پشت بام جهت نصب آنتن های مخابراتی می باشد، کاربردهای بسیاری دارند.

این نوع دکل‌ها قابلیت نصب بر روی زمین را نیز دارا می باشند.

به خاطر سبکی وزن، بهای این دکل‌ها کمتر از دکل‌های دیگر بوده و نصب آنها ساده و کم هزینه‌است.

این دکل‌ها بسته به ابعاد و نوع ساخت به چند دسته تقسیم می‌شوند از انواع آن می‌توان به دکل‌های سری G اشاره کرد که با انواعG25، G35 و G45 تولید می‌شوند.

این دکل‌ها به صورت سه و یا چهار ضلعی و به صورت سکشن‌های سه متری تولید می شوند.

این دکل‌ها ابتدا توسط کارخانه دکل سازی ROHN کانادا تولید می‌شده که اکنون در بعضی مواقع با نام این کارخانه شناخته می‌شوند.

امروزه روش ها و اصول ساخت و نصب دکل به سبک ROHN تبدیل به نوعی استاندارد مورد قبول در صنعت ساخت دکل های مخابراتی شده است.

این نوع از دکل‌های مهاری تحمل بار بسیار کم داشته و تنها برای نصب آنتن ‌های بی سیم و یا دیش‌ های کوچک استفاده می‌گردند.

عدد مقابل G نشان دهنده عرض قاعده بخش‌ها به سانتیمتر می‌باشد.

این دکل‌ها به دلیل سبکی بیشتر در پشت بام‌ها نصب می‌شوند و حداقل در هر ۹ متر به وسیله سیم مهار از سه جهت مهار می‌شوند.

ارتفاع مهار بنا به شرایط نصب، ارتفاع دکل و بار بر روی دکل می تواند متفاوت باشد.

صاعقه گیر اکتیو آذرخش(قابل نصب بر روی دکل خود ایستا و مهاری)

دکل‌های تک‌پایه:

دکل‌های تک‌پایه یا مونوپل به دکل‌هایی گفته می‌شود که به صورت تک‌پایه باشد. این دکل‌ها با مقاطع چند وجهی ساخته می‌شود.

این نوع دکل‌ها بر روی یک پایه استوار بوده و لنگر زیادی در پای دکل وجود دارد.

لرزش این دکل‌ها به تناسب بقیه دکل‌ها بیشتر می‌باشد.

این نوع دکل‌ها با توجه به فضای کمی که اشغال می‌کنند در محیط‌های شهری که زمین از ارزش بالائی برخوردار است استفاده می‌شود.

ظرفیت باربری آنها محدود بوده و در اکثر مواقع تنها برای شبکه موبایل استفاده می‌شود.

این دکل‌ها تنها با جرثقیل نصب می‌شود و لذا در محل هایی نصب می گردند که امکان حرکت و نصب با جرثقیل وجود داشته باشد.

دکل‌های بازتابی:

دکل‌های بازتابی یا پسیو رفلکتور دکل‌هایی هستند که به صورت آینه امواج رادیوئی را منعکس می‌کنند.

در مناطقی که به دلیل عوارض طبیعی مانند کوه دکل‌ها برای انتقال امواج دچار مشکل شوند برای دور زدن کوه از این نوع دکل‌ها استفاده می‌کنند.

این نوع دکل‌ها دارای پنل بزرگی بوده که زاویه آن قابل تنظیم می‌باشد.

استفاده از دکل های بازتابی در گذشته مرسوم بوده است و امروزه استفاده نمی گردند.

صاعقه گیر اکتیو آذرخش(قابل نصب بر روی دکل خود ایستا و مهاری)

طراحی دکل:

مبنای طراحی دکل‌ها بر اساس کاربرد و محل نصب و بار ناشی از وزش باد وارد بر دکل می‌باشد.

در طراحی دکل‌ها از آئین‌نامه‌ها و استانداردهای متعددی به شرح ذیل استفاده می‌شود :

  • آئین نامه ۲۸۰۰ ایران

  • آئین نامه فولاد AISC

  • استاندارد طراحی دکل‌های مخابراتی EIA-RS-222-F

اجزای دکل:

دکل‌ها به صورت قطعات پیش ساخته قابل مونتاژ ساخته می‌شوند.

متریال استفاده شده اغلب از آهن نوع ST37 و در برخی قطعات برای مقاومت بیشتر از نوع ST44 یا ST52 استفاده می‌شود.

قطعات دکل پس از ساخت جهت جلوگیری از خوردگی و زنگ زدگی گالوانیزه گرم می‌شود.

پیچ و مهره‌های دکل‌ها اغلب از نوع پیچهای مقاوم  A325 یا معادل آن گرید ۸٫۸ بوده و به صورت گالوانیزه گرم استفاده می‌شود.

صاعقه گیر اکتیو آذرخش

پی و فونداسیون:

مبنای طراحی فونداسیون‌های دکل‌های مخابراتی جهت لهیدگی و واژگونی استوار است.

در استاندارد EIA-RS-222-F برای فونداسیون‌ها بر اساس فرمول‌هایی حداقل عمق تعریف شده است.

با توجه به اینکه دکل‌ها در برابر وزش باد مستعد واژگونی هستند مقرون به صرفه‌ترین نوع فونداسیون‌ها فونداسیون‌های عمقی می‌باشد.

که در دکل‌های خودایستا بدلیل بروز کشش در یکی از پایه‌ها به صورت پاشنه‌ای و در دکل‌های مونوپل بدلیل بروز گشتاور زیاد در پای دکل به صورت شمعی طراحی می‌شود.

در زمین‌های سنگی به دلیل مشکلات حفاری فونداسیون‌ها به صورت سطحی و گسترده طراحی می‌شود چرا که به دلیل وزن بالای خود بتواند گشتاور ناشی از واژگونی را تحمل نماید.

سیستم روشنائی:

با وجود ساختمانها و آنتن های مرتفع و در جهت ایمن سازی آنها، نصب یک چراغ در بالای دکل مخابراتی الزامی می باشد، چراغ دکل از نوع LED بوده چرا که  با توجه به طول عمر و کارایی بالای این چراغ ها نیاز به تعویض و رفع عیب سیستم روشنایی حداقل باشد.

قابلیت استفاده چراغ LED دکل از صفحات خورشیدی (عدم نیاز به برق شهری) و همچنین فتوسل برای زمان روشن و خاموش شدن بصورت اتوماتیک بر اساس نور محیط از دیگر مزایای این سیستم می باشد.

چراغ دکل LED ضمن کاهش توان مصرفی تا ۸ وات امکان ایجاد حداقل شدت نور ۴۰۰candle را فراهم می نماید.

لامپ دکل LED به شکلی طراحی شده است که به راحتی قابل نصب در سرپیچهای موجود می باشد.

صاعقه گیر اکتیو آذرخش

سیستم برقگیر و صاعقه گیر:

سیستم برقگیر یا به عبارتی سیستم زمین به سیستم دریافت بار الکتریکی رعد و برق و انتقال آن به زمین می‌باشد تا از آسیب رساندن به آنتن ها و متعلقات دیگر جلوگیری به عمل آید.

انواع مختلف برق گیر های معمولی و هوشمند در بالاترین نقطه دکل نصب می گردند و توسط کابل ارت دکل به چاه ارت مجزا برای دکل متصل می گردند.

قیمت صاعقه گیر اکتیو آذرخش

منبع:ارمان تلکام

 

Permanent link to this article: http://peg-co.com/home/%d8%a7%d9%86%d9%88%d8%a7%d8%b9-%d8%af%da%a9%d9%84%d9%87%d8%a7%db%8c-%d8%b5%d8%a7%d8%b9%d9%82%d9%87-%da%af%db%8c%d8%b1-%d9%88-%d9%85%d8%ae%d8%a7%d8%a8%d8%b1%d8%a7%d8%aa%db%8c/

مديريت وبسايت بهروز عليخانی

هزینه تولید هر کیلو وات برق خورشیدی

download-1

سیستم برق خورشیدی خانگی و محاسبه تقریبی هزینه آن

یک سیستم PV خورشیدی از بخش های مختلفی تشکیل شده که بایستی با توجه به کاربرد ، موقعیت مکانی و نوع سیستم انتخاب شوند.
خورشید به عنوان یک منبع بی پایان انرژی می تواند حل کننده مشکلات موجود در زمینه انرژی و محیط زیست باشد . متاسفانه انرژی ارزان و سود بانکی بالا هر دو باعث می شود که هزینه کردن در سیستم برق خورشیدی در کشور ما مقرون به صرفه به نظر نیاید در صورتی که در دراز مدت این سیستم ها بسیار مقرون به صرفه هستند و تاثیر بسزایی در کم کردن آلودگی هوا نیز خواهند داشت.

سیستم‌های فتوولتائیک جهت مصارف عمومی و کشاورزی، بصورت نیروگاههای مستقل از شبکه سراسری یا سیستمهای متصل به شبکه سراسری با ساختار نصب ثابت و یا متحرک در واحدهای کوچک باتوان پائین جهت تامین انرژی الکتریکی مورد نیاز ماشین حساب‌های کوچک تا سیستم‌های بزرگ نیروگاهی، به کار می رود.

هر متر مربع از سطحی که خورشید – در یک روز بدون ابر و آلودگی – بر آن می تابد حدودا ۱۰۰۰ وات توان تابشی دریافت می کند. میزان تابش متوسط در ایران در حدود ۸۵۰ وات بر متر مربع است. پنل های خورشیدی موجود در بازار تجاری، راندمان حدود ۱۲ تا ۱۷ درصد دارند و با توجه با اینکه تمامی سطح یک پنل خورشیدی شامل سیلیکون های دریافت انرژی نیست، هر متر مربع از این پنل ها حدود ۱۰۰ تا ۱۵۰ وات دریافت انرژی می توانند داشته باشند.البته باید توجه کرد که این مقدار انرژی در صورت تابش عمود نور خورشید به پنل است و زاویه پنل ها در فصول مختلف سال باید تنظیم بشود.

۲b51829fd4b78630d6446133e34f07c8
سیستم برق خورشیدی مورد استفاده در یک خانه:

  • متصل به شبکه (On Grid): در سیستم متصل به شبکه برق تولید شده از انرژی خورشید به شبکه برق سراسری تزریق خواهد شد. در حقیقت در این سیستم کاربر برق تولیدی خود را به سازمان انرژی های نو ایران ( وزارت نیرو) می فروشد. در این روش، برق تولید شده پس از تبدیل شدن بوسیله اینورتر مخصوص سیستم های متصل به شبکه و با استفاده از کنتورهای مخصوص دوطرفه، به شبکه برق سراسری تزریق خواهد شد. در این حالت کاربر در حقیقت یک نیروگاه کوچک خورشیدی در خانه خود احداث نموده است که با توجه به سرمایه و فضا می تواند از یک تا ۲۰ کیلووات در خانه نیروگاه احداث نماید. با توجه به اینکه رویکرد این مقاله بر این نوع سیستم ها نیست، به همین مقدار توضیح بسنده شده است.
سیستم برق خورشیدی خانگی و محاسبه تقریبی هزینه آن
  • منفصل از شبکه (Off Grid): در این نوع سیستم، برق تولید شده از پنل خورشیدی، وارد باتری شده و در آن ذخیره می گردد. سپس برق ذخیره شده در باتری پس از تبدیل شدن به برق متناوب توسط اینورتر مخصوص سیستم های منفصل از شبکه، وارد مدار برق خانه می شود. در این روش یک کاربر می تواند همه یا بخشی از برق خانه خود را با استفاده از برق خورشیدی تامین نماید. در ادامه به توضیح سیستم برق خورشیدی منفصل از شبکه و همچنین برآورد هزینه برای یک خانه پرداخته می شود.

ویژگی های فنی سیستم فتوولتائیک خانگی

اجزای سیستم فتوولتائیک عبارتند از:

پنل ( سلول های فتوولتائیک ): این سلول ها مربع های نازک دیسک ها یا فیلم هایی از جنس نیمه هادی هستند که ولتاژ و جریان کافی را در زمان قرار گرفتن در معرض تابش نور خورشید تولید می کند. پنل‌های خورشیدی متداول به دو نوع مونو کریستال و پلی کریستال تقسیم می‌شوند. پنل‌های مونو کریستال کمی بهتر از پنل پلی کریستال می‌باشند.

در حال حاضر چند برند مختلف در ایران مورد استفاده هستند که عبارتند از:
۱- Yingli solar -4       Ja Solar -3     Shine Solar -2      Sharp

پنل‌های معمول برای یک سیستم خورشیدی خانگی در انواع ۹۰، ۲۰۰، ۲۵۰ و ۳۰۰ واتی می‌باشد.

اینورتر (مبدل ): وسیله ایست که جریان مستقیم (DC) را به جریان متناوب (AC) برای مصرف، تبدیل می کند.
اینورترهای خورشیدی به دو نوع منفصل از شبکه و متصل به شبکه تقسیم می‌شوند.

در نوع متصل به شبکه، برق تولیدی از پنل خورشیدی به طور مستقیم به اینورتر وارد می‌شود. بنابراین این اینورتر با اینورترهای معمولی متفاوت است. زیرا برق تولید شده از پنل به دلیل تاثیرات شرایط محیطی مانند تغییرات تابش نور خورشید همیشه در حال تغییر است. پس اینورتر با یک توان ورودی یکنواخت روبرو نیست و در نتیجه باید الگوی خاصی برای تبدیل برق مستقیم به برق متناوب داشته باشد. در نتیجه قیمت اینورتر خورشیدی نسبت به اینورتر معمولی بالاتر است.

یک شرکت معروف برای اینورتر خورشیدی متصل به شبکه SMA آلمان می‌باشد.

در نوع منفصل از شبکه، اینورتر برق ذخیره شده در باتری را از ۱۲ ولت مستقیم به ۲۲۰ ولت متناوب تبدیل می‌کند تا مناسب برای استفاده در وسایل برقی خانه شود. اینورترها هرچه قدر شکل تبدیلشان سینوسی تر باشد، بهتر خواهند بود. این اینورترها مانند اینورتر متصل از شبکه نیستند زیرا برق یکنواخت باتری را تبدیل خواهند کرد.

دو مدل اینورتر سینوسی کامل معروف و مناسب اینورترهای شرکت EP Solar و Cotek می‌باشند.

برای انتخاب اینورتر دو پارامتر بسیار مهم را باید در نظر گرفت:

ولتاژ ورودی به اینورتر و توان خروجی از اینورتر

ولتاژ ورودی به اینورتر منفصل از شبکه مربوط به ولتاژ باتری و در نوع متصل به شبکه مربوط به ولتاژ پنل است.

توان خروجی از اینورتر هم مربوط است به حداکثر توانی که سیستم برای آن طراحی شده است. این توان برای سیستم‌های منفصل معمولا در اینورترها از ۲۰۰ وات تا ۳۰۰۰ وات می‌باشد.

سیستم برق خورشیدی خانگی و محاسبه تقریبی هزینه آن

در جدول زیر مشخصات فنی چند اینورتر شرکت EP Solar نمایش داده شده است.

سیستم برق خورشیدی خانگی و محاسبه تقریبی هزینه آن

شارژ کنترلر: شارژ کنترلر وظیفه شارژ باتری ها را از منبع پنل خورشیدی بر عهده دارد. در حقیقت شارژ کنترلر همان شارژر باتری است اما شارژ کنترلر خورشیدی غیر از اینکه باید الگوی شارژ یک باتری را رعایت نماید ( شایان ذکر است که شارژ کنترلر باتری سرب اسیدی با باتری لیتیمی متفاوت است و این به دلیل تفاوت الگوی شارژ شدن این دو باتری است) باید خود را با توان متغیر یک پنل خورشیدی نیز وفق دهد. از این منظر شارژ کنترلر خورشیدی نیز نسبت به یک شارژ کنترلر معمولی گرانتر است.

برای انتخاب شارژ کنترلرها نیز باید دو پارامتر ولتاژ باتری و توان پنل را لحاظ  نمود.

چند مدل مناسب شارژ کنترلر خورشیدی عبارتند از EP Solar، Carspa و Phocos می‌باشند.

شارژ کنترلرها انواع مختلفی بر اساس ولتاژ ( معمولا ورودی ۱۲ یا ۲۴ ولت مستقیم) و توان  یا جریان خروجی  ( از ۵ آمپر تا ۴۰ آمپر) دارند اما به طور کلی می‌توان آنها را به دو دسته PWM و MPPT تقسیم نمود. در مدل MPPT شارژ کنترلر با اتخاذ الگویی همیشه با تغییر در ولتاژ و جریان تولید شده از پنل خورشیدی، در توان ماکزیموم کار خواهد کرد. بنابراین مدل MPPT گرانتر از مدل PWM می باشد.

در جدول زیر مشخصات فنی چند شارژ کنترلر نمایش داده شده است.

باتری: آخرین جز یک سامانه خورشیدی منفصل از شبکه، منبع ذخیره سازی توان تولیدی توسط پنل خورشیدی است که همان باتری‌های قابل شارژ می‌باشد.

باتری مناسب سیستم خورشیدی به دو نوع لیتیمی و سرب اسیدی تقسیم می‌شوند. البته برای یک سامانه خورشیدی مورد نیاز یک خانه از باتری‌های اسیدی استفاده می‌شود. باتری‌های اسیدی متداول در حال حاضر از نوع ژله‌ای می‌باشند.

جدول زیر نشان دهنده طول عمر قطعات مورد استفاده می‌باشد.

سیستم برق خورشیدی خانگی و محاسبه تقریبی هزینه آن

محاسبه هزینه تامین برق خانه با استفاده از  سیستم خورشیدی

محاسبه مقدار توان سلولهای خورشیدی است با توجه به محل جغرافیایی که قرار است پنل های فتوولتاییک در آن محل نصب شوند از اهمیت قابل توجهی برخوردار است.

چراکه در موقعیت های جغرافیایی مختلف پارامترهایی همچون زاویه تابش آفتاب، متوسط تابش روزانه آفتاب، مقدار ابری بودن روزها در طول سال و سایر عوامل جوی و محیطی تاثیر زیادی بر طراحی پانل ها از لحاظ ظرفیتی خواهد داشت.

مهمترین پارامتری که در شرایط جغرافیایی مختلف  بر روی ظرفیت پانل ها تاثیر می‌گذارد متوسط تابش روزانه آفتاب در یک منطقه بر حسب ساعت است. خوشبختانه از این لحاظ ایران کشوری است که بیشتر روزهای سال را آفتابی می‌گذراند و متوسط سالانه روزهای آفتابی در ایران به خصوص مناطق مرکزی بسیار بالاست.

برای محاسبه توان مورد نیاز ابتدا باید میزان مصرف انرژی خانه را بدست آورد. این میزان بر روی قبوض برق درج شده است و هر کاربر می‌تواند از طریق قبض برق خود میانگین مصرف ماهانه خود را بدست آورد. اما به طور میانگین برای یک خانه ۹۰ متری این مقدار به طور متوسط سالانه در حدود ۱۶۵ کیلووات ساعت در ماه یا به عبارتی در حدود ۵/۵ کیلووات ساعت در روز می‌باشد. البته در روزهای تابستان که کولر روشن خواهد شد این مقدار بیشتر می‌شود و نوع کولر آبی یا گازی توان متفاوتی را مصرف می‌کنند. حال اگر کاربری بخواهد از نیروی خورشیدی برای خانه خود استفاده نماید با توجه به لوازم برقی می بایست توان مصرفی روزانه خود را بدست آورد. در ادامه جدولی توان مصرفی وسایل برقی معمول در یک خانه ۹۰ متری آورده شده است.

موارد ذکر شده نیازهای اصلی در یک ویلا یا خانه می‌باشند و به طور تقریبی محاسبه شده است.

برای برآورد هزینه سامانه خورشیدی مورد نیاز این خانه بر اساس ۳۸۰۰ وات ساعت به شرح ذیل عمل می‌شود:

طبق داده های تجربی بدست آمده از یک نیروگاه خورشیدی در تهران یک پنل خورشیدی ۲۵۰ واتی می‌تواند بین ۱۲۰۰ تا ۹۵۰ وات ساعت در روز برق تولید نماید. بنابراین برای اینکه بتوان حداقل برق مورد نیاز یک خانه را تامین نمود باید از ۴ پنل خورشیدی ۲۵۰ واتی یا به عبارتی یک کیلووات پنل استفاده نمود. در این حالت در روز تقریبا بین ۳۸۰۰ تا ۴۸۰۰ وات ساعت برق تولید خواهد شد.

برای شارژ کردن این برق در باتری نیاز به شارژ کنترلر مدل ۱۲ ولت – ۴۰ آمپر می‌باشد.

همچنین برای تبدیل برق ۱۲ ولتی به ۲۲۰ ولت متناوب نیاز به اینورتر یک کیلوواتی است.

میزان باتری مورد نیاز برای ذخیره شدن این میزان انرژی در باتری ۱۲ ولتی، نیاز به باتری با ظرفیت ۴۰۰ آمپر ساعت است. بنابراین می‌توان از ۴ باتری ۱۰۰ آمپر ساعتی استفاده نمود.

در جدول زیر قیمت تجهیزات خورشیدی یک کیلووات مورد نیاز برای یک خانه ۹۰ متری برآورد شده است.(برای مشاهده ی تصاویر در اندازه بزرگ روی انها کلیک کنید)

همچنین با توجه به شرایط ممکن است نیاز باشد تا پنل‌ها بر روی استندهای فلزی قرار بگیرند. قیمت این استندها برای چهار عدد پنل ۲۵۰ واتی تقریبا ۵۰۰۰۰۰ تومان می‌شود. هزینه نصب سیستم نیز توسط یک شرکت تقریبا ۱۰ درصد قیمت سامانه می‌شود که تقریبا برابر ۷۰۰ تا ۸۰۰ هزار تومان خواهد بود.

کلیه قیمت های ذکر شده بروز نمی باشند.

منابع: رویای انرژی پاک و برق نیوز

Permanent link to this article: http://peg-co.com/home/%d9%87%d8%b2%db%8c%d9%86%d9%87-%d8%aa%d9%88%d9%84%db%8c%d8%af-%d9%87%d8%b1-%da%a9%db%8c%d9%84%d9%88-%d9%88%d8%a7%d8%aa-%d8%a8%d8%b1%d9%82-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c/

مديريت وبسايت بهروز عليخانی

روش نصب باتری یو پی اس

untitled

 

موارد مهم در نصب باتری یو پی اس UPS

همانطور که توضیح داده شد نصب باتری عمدتاً به صورت سری انجام می گردد که در نصب باتریها باید به یک سری از مسائل امنیتی به خصوص در نصب کابینت باتریهای با ولتاژ بالاتر از ۱۰۰ولت توجه نمود چرا که برق باتری ها مستقیم DC بوده و در زمان برق گرفتگی بسیار خطرناک تر از برق شهر می باشد به همین منظور جهت رعایت مسائل ایمنی بطور مثال برای نصب ۲۰ عدد باتری در یک کابینت باید به نحوۀ زیر عمل نمود :

batterycc

ابتدا باید کلیه باتری ها را در داخل کابینت به صورتی که دو قطب غیر همنام باتریها نزدیک هم باشد کنار هم در طبقات قرار می دهیم ( معمولا در کابینت باتریها نقشه چیدن باتریها و نصب باتریها موجود می باشد ) حتماً باید دقت گردد بیش از یک نفر همزمان باتریها را نصب ننمایند و نصاب باتری هیچگونه اشیاء فلزی از قبیل انگشتر ساعت و از این دست در دست نداشته باشد و تمام ابزار الاتی که استفاده می نماید باید دارای محافظ و عایق بندی شده باشند که در هنگام کار باعث اتصال کوتاه نگردد.پس از کنار هم گذاشتن باتریها آنها را با هم سری می کنیم و در حین کار باید دقّت شود بیش از شش عدد باتری به هم سری نگردد تا ولتاژ حداکثر ۷۲ ولت باشد تا خطر برق گرفتگی نداشته باشد و پس از اینکه کلیه باتریها طبقات را به هم متصل نمودیم اولین و آخرین سر قطب باتریها را به فیوز کابینت باتری متصل می نماییم و فیوز کابینت را قطع می نماییم سپس با احتیاط بسیار طبقات باتری را به هم متصل نموده و دقت گردد که اتصالات بسیار محکم بوده و حتماً از واشر خاردار برای محکم بودن اتصال بطوریکه بین کابلشو و سرباتری نباشد استفاده گردد .بطور معمول از کابل قرمز برای قطب مثبت و کابل مشکی و یا آبی برای قطب منفی استفاده می گردد و قطر این کابل ها طبق دفترچه راهنما یو پی اس ( UPS ) نسبت به ولتاژDC مشخص می گردد .

Hitaco

پس از نصب باتریهای یو پی اس ، ولتاژ خروجی کابینت باتری را توسط ولتمتر (ولتمتر در حالت DC قرار گیرد) باید اندازه گیری کرد و دقت شود که پراپ مثبت روی کابل قرمز و پراپ منفی ولت متر برروی کابل مشکی یا آبی قرار گیرد و ولتاژ مورد نیاز ( طبق بند شماره۲-شارژبیش از حد ) با مقداری بیشتر نشان داده شود که بطور مثال درکابینت ۲۴۰ ولت ۲۷۶ولت می باشد و عدد دیده شده در ولتمتر نباید منفی باشد ، در صورتیکه عدد منفی باشد قطب های مجموعه باتریها به کانکتور دستگاه برعکس نصب شده است . که این حالت بسیار خطرناک بوده و احتمال آسیب رسانی به دستگاه وجود دارد که باید حتما اصلاح گردد ، حال کابینت باتری آماده بوده و قابلیت اتصال به دستگاه متعلقه را دارد . (شایان ذکر است UPSهای استاندار  دارای محافظ سیستم ولتاژ DC معکوس می باشند )Puma-Atomic-Automotive-Battery-74AH

Permanent link to this article: http://peg-co.com/home/%d8%b1%d9%88%d8%b4-%d9%86%d8%b5%d8%a8-%d8%a8%d8%a7%d8%aa%d8%b1%db%8c-%db%8c%d9%88-%d9%be%db%8c-%d8%a7%d8%b3/

مديريت وبسايت بهروز عليخانی

میدان مغناطیسی زمین و فواید آن

earths_magnetic_field

مقدمه

اگر آهنربایی را از نقطه‌ای آویزان کنیم، آهنربا چرخیده و در راستای شمال و جنوب جغرافیایی قرار می‌گیرند. قطبی از آهنربا را که در راستای شمال جغرافیایی قرار دارد، قطب N و دیگری را قطب S می‌نامند. دلیل رفتار این گونه آهنربا وجود میدان مغناطیسی در زمین می‌باشد.

تصویر

 

ویلیام گیلبرت (willam gilbert) یکی از فیزیکدانان پیشگامی بود که اولین بار به وجود میدان مغناطیسی زمین پی برد. وی نشان داد که اگر یک میله آهنی را در راستای شمال و جنوب قرار داده و بر روی آن بکوبیم میله ، آهنربا خواهد شد. او همچنین برای اثبات وجود میدان مغناطیسی زمین یک آهنربا را درون کره‌ای قرار داد و نام ان را Terrlla نامید که در زبان لاتینی به معنای زمین کوچک بود. گیلبرت یک قطب نما را بر روی آن حرکت داد و مشاهده نمود که وقتی قطب نما در راستای سطح Terrlla قرار می‌گیرد، جهت عقربه مغناطیسی آن همواره ثابت می‌ماند، که نشانگر قرار گرفتن عقربه تحت تاثیر میدان مغناطیسی آهنربای درون کره است.

قطب‌های میدان مغناطیسی زمین

  • در واقع کره زمین مانند یک آهنربای قوی عمل می‌کند که قطب N آن در جنوب جغرافیایی قرار دارد (که می‌تواند قطب S آهنربا‌ها را به سمت خود منحرف کند) و قطب S آن در شمال جغرافیایی قرار دارد (که قطب N آهنربا را به سمت خود منحرف می‌سازد).
  • همه خطوط میدان مغناطیسی در نیمکره شمالی در نقطه‌ای که به آن قطب جنوب مغناطیسی زمینگفته می‌شود، به هم می‌رسند. این خطوط در نیمکره جنوبی در نقطه‌ای که به قطب شمال مغناطیسی زمین معروف است، به هم می‌رسند.
  • از آنجا که محور مغناطیسی زمین (خطی که از دو قطب مغناطیسی زمین می‌گذرد) کاملا بر محور دوران زمین (خطی که از قطب شمال و جنوب جغرافیایی زمین می‌گذرد) منطبق نیست، بنابراین یک عقربه مغناطیسی که در جهت مماس بر محور مغناطیسی زمین قرار می‌گیرد، نمی‌تواند جهت شمال و جنوب جغرافیایی زمین را دقیقا تعیین نماید.

مولفه‌های مشخص کننده میدان مغناطیسی زمین

  • میل مغناطیسی:
    از آنجا که خطوط میدان مغناطیسی زمین بر سطح آن منطبق نیستند، بین شدت میدان مغناطیسی زمین و سطح افق همواره زاویه‌ای وجود دارد، که به آن زاویه میل مغناطیسی می‌گویند.
  • زاویه انحراف مغناطیسی:
    صفحاتی که بر روی آن عقربه مغناطیسی قرار دارد، صفحه نصف النهار مغناطیسی و به زاویه بین آن و صفحه نصف النهار جغرافیایی ، زاویه انحراف مغناطیسی می‌گویند، که مقدار آن در هر منطقه متفاوت خواهد بود. چون دریانوردان و خلبانان در مسیریابی به نصف النهار جغرافیایی احتیاج دارند، لذا دانستن مقدار زاویه انحراف مغناطیسی برای آنان بسیار مهم است.
  • مولفه افقی میدان مغنا طیسی:
    اگر میدان مغناطیسی زمین به دو مولفه عمود بر هم تجزیه کنیم، مولفه افقی میدان مغناطیس زمین حاصل می‌شود.

 

تصویر

 

جابجایی قطبهای مغناطیسی زمین

دانشمندان از دیرباز می‌دانستند که قطب‌های مغناطیسی زمین حرکت می‌کنند. جیمز روس (james ross) نخستین فردی بود که محل قطب شمال را تعیین نمود. وی این کار را در طی سفری خطرناک انجام داده بود. در سال ۱۹۰۴ روالد اماند سون دوباره محل قطب شمال را تعیین نمود، و متوجه شد که محل قطب شمال به اندازه ۵۰ کیلومتر جابجا شده‌ است. اوایل سرعت حرکت قطب ۱۰ کیلومتر در یک سال بود ولی بعدها به ۴۰ کیلومتر در سال رسید.

ناهنجاری مغناطیسی زمین

وقتی انجمن زمین شناسی ایالت متحده امریکا متوجه شد که دور زدن عقربه مغناطیسی در افریقا به اندازه ۰٫۱ درجه کم شده ، و میدان مغنا طیسی ۱۰ درصد از قرن نوزدهم ضعیف تر شده است. برای جراید این سوال پیش آمد که آیا ممکن است روزی میدان مغناطیسی زمین از بین برود؟ پروفسور گری گلاتز مایر(gary Gratsmaier) از دانشگاه کالیفرنیا در جواب این سوال گفت، با توجه به مطالعات مغناطیسی در زمانهای گذشته (علم paleomagnetism) ملاحظه می‌شود که میدان مغناطیسی در اعصار گذشته گاهی در حال افزایش و گاهی در حال کاهش است.

در واقع امروزه کره زمین دارای بیشترین شدت میدان مغناطیسی خود در طول تاریخ است. هرگاه در نقطه‌‌ای از کره زمین مقدار کمیتهای مغناطیسی (انحراف مغناطیسی ، میل مغناطیسی ، مولفه افقی بردار میدان مغناطیسی) بطور فاحشی با نقا ط مجاورش فرق کند، اصطلاحا گفته می‌شود که ناهنجاری مغناطیسی اتفاق افتاده و احتمالا در آن نقطه از زمین مخازن ارزشمندی از سنگهای معدن مغناطیسی مانند سنگ آهن وجود دارد. استفاده از این روش در کشف ذخایر معدنی بسیار مفید است.

تصویر

 

توفان مغناطیسی

معمولا مقدار سه کمیت مغناطیسی در طی روز و سال تغییرات جزئی دارند. ولی گاهی اوقات در میدان مغناطیسی ، در نتیجه در مولفه‌های آن (سه کمیت) به مدت ۶ یا ۱۲ ساعت تغییرات ناگهانی رخ می‌دهد، که اصطلاحا به آن توفان مغناطیسی می‌گویند. این توفانها معمولا هر ۱۱٫۵ سال تکرار می‌شوند. جالب توجه است که پدیده‌هایی مانند شفقهای قطبی و لکه‌های خورشیدی و انتشار امواج رادیویی نیز دارای دوره‌های ۱۱٫۵ ساله هستند، که نشان دهنده ارتباط بین آنها است.

کمربند تشعشعی وان آلن

هرگا ه ذره بارداری در میدان مغناطیسی زمین قرار گیرد، بر آن ذره نیرویی وارد می‌شود، که به نیروی لورنتس معروف است. می‌دانیم که در نتیجه اندرکنش هسته‌ای درون خورشید و طوفانهای خورشیدی ، بطور مداوم ذرات پر انرژی با سرعت ۵۰۰ کیلومتر بر ثانیه در فضا گسیل می‌شوند. این موضوع سبب می‌شود که سیلی از این ذرات به سمت زمین بیایند و در دام حوزه‌های مغناطیسی آن بیافتند. از آنجا که در قطبین ، شدت میدان مغناطیسی بیشینه است، نیروی لورنتس وارد بر ذرات بنیادی بسیار بزرگ است. اگر یک گروه پروتون یا الکترون بطور عمود وارد میدان مغناطیسی شوند، از طرف میدان بر این ذرات یک نیروی عمودی و جانب مرکز به نام نیروی لورنتس وارد خواهد شد، که سبب حرکت دورانی آنها می‌شود.

در اثر این نیرو ذرات در یک مسیر دورانی به شعاع r شروع به حرکت می‌کنند و مسیر حرکت آنها حول خطوط میدان مغناطیسی زمین خواهد بود. بنابراین تعداد بیشماری ذره در حوزه‌های قطبی زمین در رفت و آمد هستند. و چون در قطبین مانند سا یر نقا ط مختلف زمین هوا موجود است، به مولکولهای هوا برخورد می‌کنند. این ذرات چون حامل انرژیهای زیادی هسند، با جذب مولکولهای هوا ،‌ آنها را یونیزه کرده و ذرات جدید و پرتوهای گاما تولید می‌کنند، و ما نقاط درخشانی را در قطب مشاهده خواهیم کرد، که به آن کمربند تشعشعی وان آلن گفته می‌شود.

منشأ میدان مغناطیسی زمین

در قلب سیاره ما گلوله سخت و یکپارچه‌ای از آهن وجود دارد که به اندازه سطح خورشید داغ است و به آن هسته زمین می‌گوییم. اقیانوسی از آهن مایع دور هسته درونی وجود دارد که به آن هسته خارجی می‌گویند. محققان منشا میدان مغناطیسی را هسته خارجی می‌دانند که لایه عمیقی از آهن مایع است و به دور هسته می‌گردد. در واقع هسته خارجی مانند آب روی اجاق ، بر روی هسته داخلی در جوش و خروش است. از طرفی اثر نیروی کوریولیس دوران زمین ، درون هسته خارجی ایجاد طوفان و گرداب می‌کند. مجموع این حرکتها است که میدان مغناطیسی سیاره زمین را بوجود می‌آورد.

فواید وجود میدان مغناطیسی زمین

درباره زمین به عنوان سیاره ای که حیات بر روی آن در جریان است واقعیتی بزرگ وجود دارد: سیاره ما در احاطه میدان مغناطیسی قرار دارد که به عنوان پوشش محافظتی در برابر پرتوهای مرگبار کیهانی عمل می کند و دقیقا به واسطه عملکرد همین پوشش است که حیات بر روی زمین امکانپذیر شده است. در واقع بدون این میدان مغناطیسی، سطح زمین طی تاریخچه ۴٫۵ میلیارد ساله اش همواره در معرض بمبارانی از پرتوهای کیهانی قرار می گرفت که نتیجه آن چیزی جز نابودی تمام گونه های زیستی و تنها برجای ماندن دسته ای از ریزارگانیسمها نمی بود.

Permanent link to this article: http://peg-co.com/home/%d9%85%db%8c%d8%af%d8%a7%d9%86-%d9%85%d8%ba%d9%86%d8%a7%d8%b7%db%8c%d8%b3%db%8c-%d8%b2%d9%85%db%8c%d9%86-%d9%88-%d9%81%d9%88%d8%a7%db%8c%d8%af-%d8%a2%d9%86/