Monthly Archive: اسفند ۱۳۹۵
Permanent link to this article: http://peg-co.com/home/%da%a9%d8%a7%d8%a8%d9%84-%d9%87%d8%a7%db%8c-%d9%87%d9%88%d8%b4%d9%85%d9%86%d8%af/

فناوری تولید برق خورشیدی از پنجرههای ساختمان
تولید برق از پنجره با فناوری کوآنتوم
به گزارش برق نیوز به نقل از ساینس نیوز، محققان معتقدند در صورتیکه تمام سطح پشتبام برجها و ساختمانهای شهری به سیستمهای تولید برق خورشیدی مجهز شوند، باز هم تولید برق مناسب با نیاز ساختمان نیست، بنابراین تنها راه ممکن استفاده از فناوری تولید برق از پنجرههای ساختمان است.
ویکتور کلیموف، متخصص نانوتکنولوژی از لابراتوار لس آلاموس عنوان کرد: تاکنون مطالعات بسیاری در مورد فناوری جذب انرژی از شیشه انجام شده، اما تولید اقتصادی برق از شیشه در این روشها به معنای تیره شدن شیشه و عدم کارایی آن است.
وی در ادامه افزود: تنها راه موجود برای تولید برق از شیشه بدون تغییر در ماهیت آن، استفاده از فناوری نیمهرساناها یا نقاط کوآنتومی برای جذب تنها بخش قابل تولید برق از نور خورشید است.
اکنون محققان این مرکز پس از ساخت نمونه آزمایشی به دنبال تولید صفحات مبدل انرژی خورشید با عمر ۱۴ سال و ضریب تبدیل انرژی ۶ درصد هستند.
نصب صفحات کوآنتومی مبدل انرژی خورشید بر روی هر نوع شیشهای امکانپذیر است. استفاده از این فناوری در کنار صفحات مبدل پشتبام، میزان تولید انرژی الکتریکی ساختمان را افزایش میدهد.
Permanent link to this article: http://peg-co.com/home/%d9%81%d9%86%d8%a7%d9%88%d8%b1%db%8c-%d8%aa%d9%88%d9%84%db%8c%d8%af-%d8%a8%d8%b1%d9%82-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c-%d8%a7%d8%b2-%d9%be%d9%86%d8%ac%d8%b1%d9%87%e2%80%8c%d9%87%d8%a7%db%8c/

استفاده بهینه از پنل های خورشیدی
جلوگیری از تبخیر آب پشت سدها با پنلهای خورشیدی
با توجه به تبخیر شدید آب در ۶۰۰ سد ساختهشده در کشور اخیرا محققان طرحی را با استفاده از پنلهای خورشیدی برای جلوگیری از تبخیر آب ارائه کردند که ضمن تولید برق از منابع تجدیدپذیر از میزان تبخیر آب ذخیرهشده در پشت سد جلوگیری شود.
به گزارش برق نیوز بر اساس آمارهای منتشرشده از سوی وزارت نیرو، متوسط سالانه بارندگی در کشور ۲۵۰ میلیمتر است، ولی به دلیل تغییرات اقلیمی در ۵ تا ۶ سال اخیر متوسط بارندگی به ۲۰۴ میلیمتر در سال کاهش یافته است.
از سوی دیگر در حال حاضر کشور با معضلات تبخیر شدید آب در پشت ۶۰۰ سد احداث شده در کشور مواجه هستیم که برای رفع این چالش نیاز به اقدامات فناورانه داریم.
اخیرا کاهش تبخیر آب از طریق پنلهای خورشیدی نیز در کشور مطرح شده است تا علاوه بر تامین برق از منابع تجدیدپذیر مانع از تبخیر آب شود.
حسن اطاعتی، مجری طرح با تأکید بر اینکه حوضههای آبخیز ایران از تبخیر بسیار بالایی برخوردار هستند، گفت: بر این اساس مطالعات گستردهای را در این زمینه انجام دادیم و نتایج دادههای ما نشان داد که برای جلوگیری از تبخیر آب در سدها میتوان از پنلهای خورشیدی استفاده کرد.
وی در این زمینه توضیح داد: در این روش با استفاده از صفحات فتوولتائیک که بر روی یک سوم دریاچه سدها قرار میگیرند، علاوه بر جلوگیری از تبخیر آب، میتوان انرژی تجدیدپذیر را از خود صفحات فتوولتائیک که بر روی آب مخازن سد نصب شده، تولید کرد.
اطاعتی با بیان اینکه مطالعات این طرح با همکاری دانشگاه شیراز انجام شده است، خاطرنشان کرد: مطالعات ما نشان میدهد قیمت برق ناشی از روشهای فتوولتائیک به یک هشتم تقلیل یافته و اجرای این طرح مقرون بهصرفه و اقتصادی است.
این محقق با اشاره به جزئیات اجرای این پروژه تحقیقاتی ادامه داد: پنلهای مورد نیاز این طرح از سوی شرکتهای دانشبنیان و مراکز تحقیقاتی قابل تأمین بوده و برنامهریزیهایی نیز برای جذب سرمایهگذاریهای خارجی صورت گرفته است.
Permanent link to this article: http://peg-co.com/home/%d8%a7%d8%b3%d8%aa%d9%81%d8%a7%d8%af%d9%87-%d8%a8%d9%87%db%8c%d9%86%d9%87-%d8%a7%d8%b2-%d9%be%d9%86%d9%84-%d9%87%d8%a7%db%8c-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c/

حودرو های خورشیدی
خودروهای خورشیدی چگونه کار میکنند؟
شاید هیچ چیز به اندازه یک نهار مجانی لذتبخش نباشد، ولی نظرتان درباره یک سواری مجانی چیست؟ فکرش را بکنید اگر خودرویتان بدون اینکه حتی یک ریال بابت بنزین پول بدهید به حرکت در بیاید، چقدر هیجانآور خواهد بود. خب اگر یک خودرو خورشیدی را برانید، این رویا به واقعیت خواهد پیوست. خودروهای خورشیدی هم مانند خانههای خورشیدی، انرژی مورد نیازشان را از خورشید تامین کرده و آن را به جریان برق تبدیل میکنند و این جریان الکتریکی موتور را به حرکت در میآورد. بعضی از خودروهای خورشیدی، از باتری استفاده نمیکنند و جریان را مستقیم به سوی یک موتور برقی میفرستند. خودروهای خورشیدی این کار را از طریق سلولهای فتو ولکانیک (PVC) انجام میدهند. PVCC ها، اجرایی از پنل خورشیدی هستند که انرژی نور خورشید را به الکتریسیته تبدیل میکنند. این سلولها، اجسامی نیمه رسانا هستند که معمولاً از سیلیکون ساخته میشوند و نور را جذب میکنند. در مرحله بعدی، انرژی نور خورشید، الکترونهای جسم نیمه رسانا را آزاد و جریان الکتریسته تولید میکند. همین جریان برق است که باتری را تغذیه میکند یا به طور مستقیم موتور را به کار میاندازد. البته ممکن است نتوانید خودروهای خورشیدی را در نمایشگاههای اتومبیل پیدا کنید، ولی این گونه خودروها از دهه ۷۰ میلادی به این سو توسط افراد مختلف ساخته شدهاند.
در سال ۱۹۷۷، اد پاسیرینی (Ed Passerini) خودرو تمام خورشیدی Bluebird و در سال ۱۹۸۲، لاری پرکینز (Larry Perkines) نیز خودرو Quiet Achiever را ساختند و اولین کسانی بودند که مبادرت به ساخت چنین خودروهایی کردند. کمپانی های فورد و مزدا نیز چند کانسپت هیبریدی حورشیدی تولید کردهاند. در سال ۲۰۰۶، کمپانی فورد پنلهای خورشیدی را روی چراغهای جلو خودرو Reflex و در سال ۲۰۰۵ نیز کمپانی مزدا این پنلها را روی سقف خودرو Senku نصب کردند تا به شارژ کردن باتری کمک کنند. در سال ۲۰۰۸ نیز کمپانی کادیلاک برای به کار انداختن تجهیزات برقی مانند چراغهای داخلی و سیستم صوتی خودرو Provoq، از پنلهای خورشیدی استفاده کرد. با این که خودروهای مذکور خودروهایی کانسپت بودند، ولی خودروسازان تلاش کردند به روشهای مبتکرانهای دست پیدا کنند تا وابستگی خودروها به سوختهای فسیلی قطع بشود.
ونچوری، خودروساز فرانسوی نیز در نمایشگاه خودرو ۲۰۰۶ پاریس، از خودرو الکتریکی خودش رونمایی کرد. این خودرو سه نفره شهری که Eclectic نام داشت، انرژی خورشید، باد و باتری را به کار میگرفت تا به حرکت در بیاید. پنلهای خورشیدی سقف آن را پوشانده بودند، توربین بادی نیز میتوانست در روزهای پر باد، از آن انرژی به دست بیاورند. البته خودرو Eclectic برای حرکت در بزرگراه مناسب نبود چون سرعت آن حداکثر به ۳۰ کیلومتر بر ساعت میرسید. در اینجا این سوال پیش میآید که خودروهای خورشیدی چگونه کار میکنند، ادامه مطلب را بخوانید تا اطلاعات بیشتری در این مورد به دست بیاورید.
آیا خودروهای خورشیدی کاربردی هستند؟
مارسلو دا لوز (Marcelo da Luz) از کشور کانادا، هنگام سفر به قطب شمال از یک خودرو خورشیدی استفاده کرد. او برای انتخاب یک خودرو تک نفره، یک میلیون دلار بودجه در اختیار داشت، ولی اصرار داشت از یک خودرو خورشیدی استفاده کند تا کاربردی بودن آنها را به همگان نشان بدهد. اگر چنین بودجه سرسامآوری در اختیار شما قرار میگرفت، آیا به خودرو دیگری به جز ونچوری Eclectic فکر میکردید؟ این کمپانی فرانسوی تصمیم گرفته بود در اکتبر سال ۲۰۰۸ از نسخه نهایی این خودرو پردهبرداری کند و قیمتی در حدود ۳۰,۰۰۰ دلار برای آن در نظر گرفته بود. با این حال بودجه زیادی در اختیار مارسلو دا لوز قرار داشت و بهای ان را پرداخت تا به همه نشان بدهد که استفاده از انرژی خورشیدی ارزان تمام نمیشود. بهتر است بدانید هر کدام از سلولهای خورشیدی بین ۱۰ تا ۴۰۰ دلار هزینه برمیدارند. هرچه هزینه بیشتری برای آنها صرف شود، بهتر میتوانند نور خورشید را جذب و آن را به جریان برق تبدیل کنند. خودروهای خورشیدی مسابقهای که میتوانند به سرعتی بالاتر از ۱۰۰ کیلومتر دست پیدا کنند و صدها کیلومتر راه بپیمایند، از هزاران سلول خورشیدی استفاده میکنند که بر روی بدنه آنها نصب شدهاند. این سلولها ممکن است صدها تا هزاران دلار هزینه داشته باشند. خودروهای مسابقهای خورشیدی به منظور این که به سرعتی بالاتر از صد کیلومتر دست پیدا کنند باید از وزن و آیرودینامیک بسیار خاصی برخوردارد باشند. طراحی این خودروها، وقتی در کنار موتور خاصشان، به این گونه خودروها اجازه میدهد با صدایی در حد صدای یک سشوار روی جاده حرکت کنند. بهتر است بدانید خودروهای بنزینی فقط حدود ۱۵ درصد از انرژی حاصل از سوزاندن بنزین را به انرژی تبدیل میکنند، ولی خودروهای خورشیدی ۹۰ درصد از نور آفتاب را به انرژی تبدیل میکنند. البته این میزان از بهرهوری و کارآمدی در چهره ظاهری این خودروها بازتاب پیدا نمیکند و این خودروهای اغلب تک سرنشین، مانند کیکهایی به نظر میرسند که چهار چرخ داشته باشند، و همانطور که میتوانید حدس بزنید، راننده هنگام رانندگی با خودرویی که از پنلهای خورشیدی پوشیده شده است باید گرمای زیادی را تحمل کند.
محفظه سرنشین این گونه خودروها از سلولهای خورشیدی پوشیده شده است و به سرعت داغ میشود. پرسشی که در اینجا پیش میآید این است که در روزهای ابری و یا در طول شب که نور خورشید وجود ندارد، این خودروها چگونه کار میکنند. در اینجاست که باتری و یا یک موتور بنزینی کوچک، وارد عمل میشود. بیشتر خودروهای خورشیدی با یک منبع انرژی اضافی نیز کار میکنند تا اطمینان حاصل شود هر زمان به خودرو احتیاج داشتید قادر است به حرکت در بیاید. راستش را بخواهید، جیمز دایسون (James Dyson)، مخترع جارو برقی بدون کیسه، به تازگی از اختراع جدیدش رونمایی کرده است. او یک خودرو برقی اختراع کرده است که سقفی پوشیده از سلولهای خورشیدی دارد تا بتواند مسافت هرچه بیشتری را بپیماید. به این ترتیب، انرژی خورشیدی میتواند در خدمت خودروهای برقی در بیاید و مسافتی که قادرند بپیمایند را هر چه بیشتر افزایش بدهند. اگر انرژی خورشیدی به این روش در اختیار خودروهای برقی قرار بگیرد، این خودروها قادر خواهند بود هنگامی که آسمان آفتابی است و نور زیادی وجود دارد، انرژیشان را از طریق پنلها تأمین کنند و هنگامی که هوا تاریک میشود، نیروی ذخیره شده در باتری را به کار بگیرند.
منبع:۱car.ir
Permanent link to this article: http://peg-co.com/home/%d8%ad%d9%88%d8%af%d8%b1%d9%88-%d9%87%d8%a7%db%8c-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c/

ارت در مهندسی برق(آییننامه ها)
آییننامه سیستم اتصال به زمین (ارتینگ)
فصل اول ـ تعاریف
این فصل به تعریف اصطلاحها و کلمههای بکار رفته در آئیننامه میپردازد.
۱ـ زمین (ارت)۱:
رسانندگی جرم زمین را در صورتی که پتانسیل الکتریکی در هر نقطه از زمین به صورت قراردادی برابر صفر در نظر گرفته شود، زمین (ارت) مینامند.
۲ـ سیستم اتصال به زمین (ارتینگ)۲:
یک یا چند الکترود همراه با سیمهای ارت را که قابلیت اتصال به ترمینال اصلی داشته باشند، سیستم اتصال به زمین (ارتینگ) مینامند.
۳ـ الکترود ارت (زمین)۳:
رسانا یا گروهی از رساناهای متصل به هم است که اتصال الکتریکی به زمین را فراهم میکنند.
۴ـ مقاومت الکترود ارت۴:
مقاومت بین ترمینال اصلی زمین و کره زمین است.
۵ ـ امپدانس حلقه اتصال به زمین۵ :
امپدانس حلقه جریان اتصالی زمین است که شروع و پایان آن نقطه اتصالی است و با ZS نشان داده میشود.
ـ حلقه اتصالی زمین در سیستمهای مختلف به شرح ذیل است:
الف ـ سیستمهای TN
نقطه شروع (محل اتصالی)، از بدنه دستگاه به ترتیب به سیم ارت، شینه ارت، شینه نول، نقطه ترانس، سیمپیچ ترانس، سیم فاز اتصالی و نقطه اتصال به بدنه.
ب ـ سیستمهای TT و IT
نقطه شروع (محل اتصالی)، سیم اتصال به زمین، الکترود زمین، زمین، الکترود سیستم، شینه نول، نقطه صفر ترانس، سیم فاز اتصالی و نقطه اتصالی.
۶ ـ اتصالی:
حالتی از مدار است که جریان در مسیری غیرعادی یا بدون اینکه پیشبینی شده باشد یا در نظر گرفته شود، جاری میشود. این جریان امکان دارد از نقص در عایقبندی یا از بستهای به کار رفته بر روی عایق رساناها ناشی شود.
۷ ـ جریان اتصال به زمین (جریان اتصال کوتاه)۶ :
اضافه جریانی است که در نتیجه بروز اتصالی با امپدانسی قابل چشمپوشی بین هادیهای با پتانسیلهای مختلف در شرایط عادی کار برقرار شود.
۸ ـ جریان نشتی زمین۷ :
جریان جاری به زمین یا رساناهای دیگری را که مدار الکتریکی آنها به زمین راه دارد، جریان نشتی زمین مینامند. در صورت استفاده از خازن در مدارها، امکان دارد جریان مذکور دارای مقدار جزء خازنی هم باشد.
۹ـ سیم اتصال به زمین (سیم ارت)۸ :
سیم حفاظتی را گویند که ترمینال اصلی ارت تأسیسات را به الکترود ارت یا سایر قسمتهای اتصال به زمین وصل میکند.
۱۰ـ سیم خنثی (نول)۹ :
سیمی متصل به نقطه خنثی در سیستم (صفر زمین) که قادر است انرژی الکتریکی را انتقال دهد.
۱۱ـ هادی حفاظتی (PE)10 :
در بعضی از اقدامات حفاظتی برای تأمین ایمنی در برابر برقگرفتگی لازم است با استفاده از هادی حفاظتی قسمتهای زیر به همدیگر وصل شوند:
ـ بدنههای هادی؛
ـ قسمتهای هادی بیگانه؛
ـ ترمینال اصلی زمین؛
ـ الکترود زمین؛
ـ نقطه صفر ترانس (نقطه خنثی)؛
۱۲ـ سیم غلافدار فلزی به منظور زمین کردن:
یک نوع سیستم سیمکشی است که در آن سرتاسر طول یک یا چند سیم عایقدار توسط نوار یا غلاف فلزی پوشانده شده و مانند هادی PEN عمل میکند.
۱۳ـ سیم مشترک ارت ـ نول (PEN)11 :
سیمی را که به طور مشترک، هم کار سیم اتصال به زمین و هم کار سیم نول را انجام دهد، سیم PEN مینامند.
۱۴ـ قسمتهای بیحفاظ (روباز) هادی:
قسمت بی حفاظ از تجهیزات را که قابل لمس بوده و حامل برق نیست، اما امکان برقدار شدن در شرایط اتصالی را دارد، قسمت بیحفاظ هادی مینامند.
۱۵ـ ترمینال اصلی اتصال به زمین (ارتینگ)۱۲ :
ترمینال یا شینهای را گویند که برای اتصال به سیمهای محافظ تهیه شده و سیمهای همپتانسیلکننده و سیمهای اتصال به زمین (ارت)، یا هر وسیلهای که به عنوان اتصال به زمین (ارتینگ) به کار میرود، به آن وصل میشوند.
۱۶ـ قسمتهای برقدار۱۳ :
سیم یا قسمتهایی از رسانا را که برای استفادههای معمولی برقدار شدهاند، قسمتهای برقدار مینامند.
سیم نول نیز شامل این قسمتهاست، اما طبق قرارداد، سیم PEN (سیم مشترک ارت ـ نول) به عنوان قسمت برقدار محسوب نمیشود.
۱۷ـ پتانسیل زمین (ارت)۱۴ :
پتانسیل الکتریکی ایجاد شده نسبت به جرم موجود زمین یا نسبت به سطح زمین اطراف الکترود ارت را هنگامی که جریان الکتریکی از الکترود به زمین جاری شود، پتانسیل زمین مینامند.
۱۸ـ کرادیان پتانسیل (در یک نقطه از زمین)۱۵ :
اختلاف پتانسیل اندازهگیری شده بر واحد طول یک نقطه را در جهتی که پتانسیل بیشترین مقدار را داشته باشد، گرادیان پتانسیل مینامند.
۱۹ـ دستگاههای سیار (قابل حمل) ۱۶ :
دستگاههای الکتریکی را مینامند که در حال حرکت کار میکنند یا اینکه میتوانند به آسانی از محلی به محل دیگر حرکت داده شوند. در حالی که به پست توزیع برق متصل هستند.
۲۰ـ قسمتهایی که به طور همزمان با هم قابل دسترسی هستند۱۷ :
سیمها یا قسمتهای رسانا که به طور همزمان در موقعیتهای مخصوصی قابل لمس هستند. این قسمتها شامل بدنههای برقدار، قسمتهای بدون حفاظ (روباز)، هادیهای بیگانه، سیم ارت و الکترودهای ارت هستند.
۲۱ـ دستگاه پس ماند جریان (RCD) 18 :
دستگاه سوئیچینگ مکانیکی یا مجموعهای از دستگاهها که در شرایط مشخصی سبب بازنگهداشتن اتصالات در مواقعی میشوند که پسماند جریان به مقدار معینی رسیده باشد.
۲۲ـ هادی بیگانه:
قسمتی از رساناها را که احتمال ایجاد پتانسیل، به ویژه پتانسیل ارت در آنها وجود دارد و قسمتهای شکلیافتهای از تجهیزات الکتریکی نیستند، هادی بیگانه مینامند.
۲۳ـ وسایل قطع و وصل و کنترل۱۹ (قبل یا بعد از تابلو)
تجهیزاتی است که برای وصل یک مدار الکتریکی با هدف ذیل پیشبینی میشود:
ـ حفاظت
ـ کنترل
ـ جدا کردن
ـ انجام عملیات قطع و وصل
۲۴ـ تابلو۲۰ (مجموعهای از تجهیزات قطع و وصل و کنترل):
ترکیبی است از فیوزها، لوازم قطع و وصل و رلههای کنترل که کلیه اتصالات الکتریکی و مکانیکی بین آنها و نیز وسایل اندازهگیری مانند آمپرمتر یا ولتمتر را نیز شامل میشود.
۲۵ـ حصار ۲۱ :
حفاظی است که از تماس مستقیم با ولتاژهای خطرناک جلوگیری میکند. مانند حصار ترانس پست برق فشار قوی.
۲۶ـ باتری۲۲ :
یک سیستم الکتروشیمیایی است که قادر به ذخیره انرژی الکتریکی دریافتی به صورت شیمیایی است و آن را از طریق تبدیل، باز پس میدهد.
۲۷ـ کانال کابل۲۳ :
محفظه یا پوششی است که بالای زمین یا داخل آن قرار دارد و در بعضی موارد دارای تهویه است و ابعاد آن اجازه ورود افراد را به داخل آن نمیدهد، ولی امکان دسترسی به هادیها یا کابلها در تمامی طول آن امکانپذیر است.
۲۸ ـ سینی کابل۲۴ :
تکیهگاه پایه داری برای کابل است که لبههای آن برگشته و بدون پوشش است و ممکن است دارای منافذ پرس شده باشد.
۲۹ـ تونل کابل۲۵ :
محفظهای است به شکل راهرو و آدمرو، حامی سازههای نگهدار برای هادیها یا کابلها و مفصلها که دسترسی آزاد برای افراد در تمام طول آن ممکن باشد.
۳۰ـ مدار (برقی دریک تأسیسات) ۲۶ :
مجموعهای از تجهیزات الکتریکی که از منبعی واحد تغذیه کنند و در برابر اضافه جریانها به کمک وسیله واحدی حفاظت شوند.
۳۱ـ مدار توزیع (از یک تأسیسات)۲۷ :
مداری است که یک تابلوی برق را تغذیه میکند.
۳۲ـ کلید خودکار۲۸ :
وسیله مکانیکی قطع و وصل است که قادر است در شرایط عادی مدار جریانها را قطع یا وصل کند و در شرایط غیرعادی مانند اتصال کوتاه، جریانی را به مدت کوتاه از خود عبور دهد یا قطع کند.
۳۳ـ جریان طراحی (یک مدار)۲۹ :
شدت جریانی است که پیشبینی میشود در حالت عادی از مدار عبور کند.
۳۴ـ جریان مجاز حرارتی (یک هادی)۳۰ :
حداکثر شدت جریان است که میتواند به طور دایم و در شرایط معین از هادی عبور کند، بدون آنکه دمای دایمی آن از مقدار مشخص تجاوز کند.
۳۵ـ اضافه جریان۳۱ :
هر شدت جریانی که از مقدار اسمی تجاوز کند. در مورد هادیها مقدار اسمی برابر جریان مجاز حرارتی است.
۳۶ـ جریان اضافه بار (یک مدار) ۳۲ :
اضافه جریان در مداری است که خرابی الکتریکی ندارد.
۳۷ـ شدت جریان عملیاتی قراردادی (مربوط به یک وسیله حفاظتی)۳۳ :
شدت جریان معینی است که سبب میشود وسیله حفاظتی در مدت مشخصی که به آن زمان قراردادی گویند، عمل کند.
۳۸ ـ تماس مستقیم۳۴ :
تماس افراد یا احشام است با قسمتهای برقدار، مانند تماس با سیم فاز یا تماس با سیم فاز و نول.
۳۹ـ تماس غیرمستقیم۳۵ :
تماس افراد یا احشام با قسمتهای معیوب الکتریکی مانند تماس با کلید یا پریز معیوب یا بدنه فلزی برقدارشده که در حالت عادی برقرار نیستند.
۴۰ـ ترمینال اصلی زمین (شینه ارت) ۳۶ :
ترمینال یا شینهای است که برای وصل هادیهای حفاظتی که شامل هادیهای همبندی برای هم ولتاژ کردن و هادیهای مربوط به اتصال زمین عملیاتی (در صورت وجود) به سیستم زمین است، پیشبینی میشود.
۴۱ـ تجهیزات الکتریکی۳۷ :
شامل هر نوع مصالح و لوازم و وسایل و تجهیزاتی است که در تولید، تبدیل، انتقال، توزیع یا مصرف انرژی الکتریکی مورداستفاده قرار میگیرد، مانند ترانسفورماتورها، وسایل اندازهگیری، وسایل حفاظتی، تجهیزات سیستمهای سیمکشی و وسایل مصرفکننده انرژی الکتریکی مانند لوازم خانگی و غیره.
۴۲ـ تجهیزات مصرفکننده جریان۳۸ :
تجهیزاتی است که برای تبدیل انرژی الکتریکی به نوعی انرژی دیگر در نظر گرفته میشود. مانند لامپها، بخاریهای برق و دینامها.
۴۳ـ فیوز۳۹ :
وسیلهای است که به نحو مخصوصی طراحی و تناسب یافته و در صورتی که در یک مدار الکتریکی شدت جریان برق در مدت زمان معینی از مقدار کافی بیشتر شود از طریق ذوب یک یا چند المان، آن مدار را حفظ میکند.
۴۴ـ تأسیسات الکتریکی ۴۰ :
مجموعهای از تجهیزات الکتریکی مرتبط با هم است که هدف یا هدفهای معینی را که دارای مشخصات هماهنگ هستند تأمین میکنند.
۴۵ـ سرویس ورودی تأسیسات الکتریکی ۴۱ :
نقطهای است که در آن انرژی الکتریکی به ساختمان ، کارگاه یا کارخانه تحویل میشود.
۴۶ـ عایقبندی ۴۲ :
عایقبندی به قسمتهای برقدار اعمال میشود تا در برابر برقگرفتگی ایمنی ایجاد کند.
۴۷ـ عایقبندی کابل ۴۳ :
مواد عایقی هستند که در ساختار کابل به کار میرود و کار اصلی آنها مقاومت در برابر ولتاژ است.
۴۸ـ مفصل۴۴ :
وسیلهای است برای اتصال بین دو کابل که یک مدار مداوم را تشکیل میدهد.
۴۹ـ سپر (شیلدینگ کابل)۴۵ :
لایه فلزی و زمین شده روی کابل است تا میدان الکتریکی کابل را به داخل آن محدود یا کابل را در برابر تأثیر عوامل الکتریکی خارج، حفاظت کند. (غلافهای فلزی، زرهها و هادیهای هم مرکز زمین شده ممکن است به عنوان سپر نیز بکار روند.)
۵۰ ـ کلید قطع بار۴۶ :
وسیله مکانیکی قطع و وصل است که قادر به وصل، عبور دادن و قطع جریان برق مدار در شرایط عادی است. شرایط عادی ممکن است شامل وضعیتی با اضافه بارهای مشخص باشد و همینطور برای مدتی مشخص جریانهایی را در شرایط غیرعادی مدار، مانند اتصال کوتاه تحمل کند.
۵۱ ـ ولتاژ تماس۴۷ :
ولتاژی است که به هنگام بروز خرابی در عایقبندی بین قسمتهایی از هادیها، بدنههای هادی، قسمتهای هادی بیگانه و غیره که به طور همزمان در دسترس هستند، ظاهر میشود. (شکل۱)
۵۲ ـ ولتاژ تماس احتمالی ۴۸ :
حداکثر ولتاژ تماس است که احتمال دارد در صورت بروز اتصال کوتاهی با امپدانس ناچیز، در تأسیسات الکتریکی ظاهر شود.
۵۳ ـ ولتاژ گام
ولتاژی است که براثر برخورد هادی فاز با زمین ایجاد میشود. این برخورد ممکن است در اثر پارگی هادیهای فاز برق فشار ضعیف یا فشار قوی بوجود آمده و یا اینکه در اثر از بین رفتن عایقبندی سیمها یا کابلهای برقدار و نشت جریان برق به زمین حادث میشود. (شکل۱).
۵۴ ـ اضافه ولتاژ صاعقه ۴۹ :
اضافه ولتاژگذرایی در نقطهای از سیستم است که به علت اصابت صاعقهای با مشخصات معین ظاهر میشود.
۵۵ ـ سیستم سیمکشی ۵۰ :
مجموعهای است متشکل از کابل و سیم یا کابلها و سیمها و یا شینهکشی و همچنین قسمتهایی که آنها را نگهداری میکند (لولههای پولیکای تویکار، روی کار، داکتها، سینیها و کانالها).
(شکل)
فصل دوم ـ مفاهیم بنیادین سیستم اتصال به زمین
ماده۱ـ اتصال به زمین از دو نظر مهم است:
۱ـ حفظ سلامت و ایمنی افرادی که از سیستم برق استفاده میکنند.
۲ـ حفظ سلامت سیستم، صرفنظر از مسایل مربوط به ایمنی.
ماده۲ـ اتصال به زمین از نظر انجام کار صحیح و سالم سیستم، دو هدف را دنبال میکند:
۱ـ ایجاد شرایطی که در آن، سیستم از نظر فنی درست عمل کند.
این هدف با برقراری مسیری از طریق زمین به منبع تغذیه و اتصال به زمین با استفاده از رلههای حساس به دست میآید.
۲ـ ایجاد شرایطی که در آن عایقبندی سیستم سالم میماند.
در سادهترین تحلیل ممکن، یک سیستم از رساناها و عایقها تشکیل میشود، رساناها باید تا جایی که ممکن است جلوی عبور جریان برق از مسیرهای ناخواسته را بگیرند. به عبارت دیگر، عبور جریان برق باید در مسیر دلخواه برقرار شود و در سایر جهات از آن جلوگیری به عمل آید. عایقها حساستر از هادیها هستند و علاوه بر دمای زیادی که سبب انهدام عایق میشود، بالا رفتن بیش از حد ولتاژ و اثر آن به مدت طولانی، مخصوصاً در دمای بالا، عایق را زودتر از بین برده و سبب بروز خرابی در سیستم میشود.
به طور خلاصه، صرفنظر از اثر دما در تحلیل اولیه، عمر عایقبندی بستگی به شدت میدان و مدت زمان برقراری آن دارد. اگر شدت میدان کمی از مقدار مجاز آن بیشتر باشد، ممکن است پس از چند سال سبب خرابی عایقبندی شود و اگر این مقدار چند برابر مقدارمجاز باشد، در ظرف چند دقیقه یا ثانیه سبب از بین رفتن عایقبندی در ضعیفترین نقطه سیستم میگردد. در شکل (۲) منحنی تغییرات ایستادگی عایقبندی یک کابل با توجه به تنش میدان الکتریکی و مدت زمان برقراری آن نشان داده شده است.
(نمودار)
مشاهده میشود که تغییرات شدت میدان نسبت به زمان به گونهای است که شدت میدان با خط افقط مجانب است و این مقداری است که در مدتی طولانی، عایقبندی در آن شدت میدان را نشان خواهد داد. قابل ذکر است که در دماهای مختلف محل خط مجانب تغییر خواهدکرد.
ماده۳ـ تغییرات ولتاژ در سیستمی که به زمین وصل نیست:
در این بخش به بررسی اثر ولتاژها در حالت واقعی میپردازیم. شکل (۳) وضعیت ولتاژها را در صورت وصل نبودن یک نقطه از سیستم به زمین نشان میدهد:
ولتاژ نقطه خنثی (N) نسبت به زمین در صورت سالم بودن سیستم، به علت وجود خازنهای طبیعی بین فازهای سیستم و زمین، برابر صفر است و در این هنگام ولتاژهای موجود هیچ تنش اضافی را روی عایقبندی هادی خنثی و هادیهای فازها در سرتاسر سیستم، به وجود نخواهدآورد.
U N-E = 0
V 230 U L1-E = U0 =
V 230 U L2-E = U0 =
V 230 U L3-E = U0 =
اما اگر به سبب بروز سانحهای در سیستم، یکی از فازها (L1) به زمین وصل شود، وضعیت ولتاژهای سیستم به صورت ذیل خواهدبود:
ولتاژ نقطه خنثی (N) نسبت به زمین در سیستمی که یک فاز آن به زمین وصل شده است، دیگر برابر صفر نبوده و برابر U0 خواهدبود. در این هنگام ولتاژهای موجود تنشی را روی عایقبندی هادی خنثی و هادیهای فازها در سرتاسر سیستم به وجود خواهند آورد:
V 230 U N-E = U0 =
۰ U L1-E = U =
V 400 U L2-E = U0 =
V 400 U L3-E = U0 =
(اشکال)
همچنین مقدار ولتاژ ممکن است در زمانی طولانی عایقی را که برای آن پیشبینی نشده است، از بین ببرد.
از طرف دیگر، قبل از اینکه عایقبندی در اثر بالا رفتن ولتاژها خراب شود، ممکن است باعث جرقه زدن بین نقاطی از سیستم شود که ولتاژ آنها نسبت به هم بیشتر از دوام عایق آنهاست.
ماده۴ـ انواع سیستمهای توزیع فشار ضعیف:
۱ـ سیستمهای سه فاز با هادی خنثی؛
۲ـ سیستمهای تک فاز منشعب از سه فاز با هادی خنثی؛
دو سیستم مذکور در ایران معمول است، اما انواع دیگری سیستمهای توزیع وجود دارند که در شکل (۴) نمونههایی از آنها مشاهده میکنید.
(شکل)
ماده۵ ـ شناسایی هادیها در سیستمهای جریان متناوب:
(۲ـ۳ـ۱) برای مشخص کردن هادی فاز از حرف L (اولین حرف کلمه Live ) استفاده میشود.
(۲ـ۳ـ۲) برای مشخص کردن هادی خنثی از حرف N (اولین حرف کلمه Neutral ) استفاده میشود.
(۲ـ۳ـ۳) برای مشخص کردن هادی حفاظتی از حرف PE (اولین حرف کلمات Protective Earthing ) استفاده میشود.
(۲ـ۳ـ۴) برای مشخص کردن هادی مشترک حفاظتی/خنثی از حروف PEN (اولین حروف کلمات Protective Earthing + Neutral ) استفاده میشود.
بنابراین، سیستمهای تک فاز به قرار ذیل خواهند بود:
الف) سیستمهای دو سیمه L1 + PEN ; L1 + L2 ; L1 + N
ب) سیستم سه سیمه L1 + N + PE
سیستمهای سه فاز به صورت ذیل خواهند بود:
الف) سیستم سه سیمه L1 + L2 + L3
ب) سیستمهای چهار سیمه ( PEN یا PE یا N ) L1 + L2 + L3 +
ج) سیستمهای پنج سیمه L1 + L2 + L3 + N +
آییننامه سیستم اتصال به زمین (ارتینگ)
ج) سیستمهای پنج سیمه L1 + L2 + L3 + N + PE
فصل سوم ـ سیستمهای اتصال به زمین
ماده۶ ـ انواع مختلف اتصال به زمین:
در انواع مختلف سیستمهای الکتریکی، وصل قسمتهایی از سیستم و بدنههای هادی لوازم الکتریکی به جرم کلی زمین از دو دیدگاه مورد توجه است:
الف) اتصال به زمین عملیاتی یا سیستم
در این روش وصل نقطه خنثای سیستم به زمین باعث قطع مدارهای معیوب احتمالی میشود و در نتیجه عایقبندی سیستم حفظ شده، صحت کار لوازم و دستگاههای الکتریکی تأمین و اضافه ولتاژها محدود میگردد و از این طریق به کار درست لوازم و مدارها کمک میشود.
ب) اتصال به زمین حفاظتی
در این روش بدنههای هادی به خنثی و زمین وصل میشود تا در مواقع اتصالی مدار معیوب را به سرعت قطع کند و بدین ترتیب ایمنی افرادی که بنا به وظیفه شغلی در تماس با تجهیزات سیستمهای الکتریکی هستند و همچنین سایر افراد جامعه که مصرفکننده نهایی انرژی هستند، تأمین شود و خطر آتشسوزی نیز محدود گردد.
ماده۷ـ طبقهبندی سیستمهای اتصال به زمین فشار ضعیف:
انواع سیستمهای اتصال به زمین فشار ضعیف عبارتند از:
۱ـ TN شامل TN-C ، TN-S و TN-C-S
۲ـ TT
۳ـ IT
ماده۸ ـ نامگذاری سیستمهای الکتریکی مذکور به صورت ذیل است:
الف) از دو حرف اصلی شناسایی، حروف اول سمت چپ رابطه سیستم با زمین را مشخص میکند.
حرف اول از سمت چپ T (برگرفته از کلمه Terra (لاتین) به معنای زمین):
بدین معناسب که یک نقطه از سیستم به زمین وصل است.
حرف اول از سمت چپ I (برگرفته از کلمه Isolated) :
نشان میدهد که سیستم از زمین مجزاست یا با مقاومتی بزرگ به آن وصل است.
ب) از دو حرف اصلی شناسایی، حرف دوم از سمت چپ رابطه بدنههای هادی تجهیزات با زمین را مشخص میکند:
حرف دوم از سمت چپ N : نمایانگر آن است که بدنههای هادی به هادی خنثای زمین شده، وصل هستند.
حرف دوم از سمت چپ T : مشخص میکند که بدنههای هادی، مستقل از زمین سیستم، به زمین وصل هستند.
ج) حروف کمکی نشاندهنده زیر سیستمها هستند ( C و S )
حرف سوم از سمت چپ S : بدنههای هادی از طریق یک هادی حفاظتی مخصوص (PE) در مبدأ به نقطه خنثای سیستم وصل میشود. (سیستم TN-S ).
حرف سوم از سمت چپ C : بدنههای هادی از طریق یک هادی حفاظتی مشترک مخصوص و خنثی (PEN) به زمین وصل میشود. (سیستم TN-C ).
ماده۹ـ سیستم TN :
در این سیستم منبع انرژی (ترانس پست یا ژنراتور برق) در یک یا چند نقطه ارتشده و قسمتهای هادی در دستر و قسمتهای هادی بیگانه تأسیسات تنها از طریق سیمهای ارت به نقطه یا نقاط ارت شده منبع متصل میشوند. به عبارت دیگر مسیری رسانا برای عبور جریانهای اتصال به زمین تأسیسات به نقطه یا نقاط ارت شده منبع وجود دارد.
این سیستم به چند دسته تقسیم میشود:
الف) سیستم TN – C : (شکل ۵ ـ الف):
در این سیستم، سیم ارت و نول مشترک هستند. به عبارت دیگر سیم نول که از شینه نول تابلوی اصلی به مصرفکنندهها برده میشود، هم به عنوان نول مورد استفاده قرار میگیرد و هم به عنوان سیم ارت یعنی یک انشعاب از سیم نول به بدنه هادی دستگاههای مصرفکننده به عنوان سیم ارت وصل میشود. کابلهای هم مرکز ارت شده یا کابلهای غلافدار فلزی ارت شده که مسیر برگشتی برای عبور جریان اتصال به زمین را فراهم میآورند، نمونههایی از این سیستم هستند.
(شکل)
ب) سیستم TN-S : (شکل ۵ ـ ب):
در این سیستم، سیمهای نول و ارت از یکدیگر جدا هستند. یعنی در محل تابلوی اصلی برق علاوه برشینه نول، شینه دیگری به نام شینه ارت وجود دارد که سیم ارت اصلی از الکترودهای زمین به آن وصول شده و از آنجا به موازات سیمهای نول و فازها (به صورت پنج سیمه) تا دستگاههای مصرفکننده برده شده و به بدنه هادی آنها متصل میشود.
(شکل)
ج) سیستم TN-C-S (شکل (۵ ـ ج)):
تنها در بخشی از این سیستم (معمولاً در ابتدا)، سیم نول و ارت با یکدیگر مشترک هستند و از آن نقطه به بعد، سیم پنجمی از نول منشعب شده و جداگانه به بدنه دستگاههای مصرفکننده اتصال داده میشود.
(شکل)
ماده۱۰ـ سیستم TT (شکل (۶)):
در این سیستم منبع انرژی (ترانس پست یا ژنراتور برق) در یک یا چند نقطه ارتشده و قسمتهای هادی در دسترس و هادی بیگانه تأسیسات به الکترود ارت محلی یا الکترودهایی که نقطه نظر الکتریکی مستقل از ارتهای منبع سیستم هستند، متصل میشوند. یعنی اتصال به زمین حفاظتی هیچگونه ارتباطی با اتصال به سیستم ندارد.
(شکل)
ماده۱۱ـ سیستم IT (شکل (۷)):
در این سیستم منبع انرژی (ترانس پست یا ژنراتور برق) یا به طور کلی ارت نشده، یا از طریق یک امپدانس بزرگ ارت میشود و قسمتهای هادی در دسترس تأسیسات نیز به الکترود ارتی که از نظر الکتریکی مستقل است، وصل میشوند. در این سیستم نیز اتصال به زمین حفاظتی و اتصال سیستم با یکدیگر ارتباط ندارند.
استفاده از این سیستم برای شبکههای عمومی توزیع برق ممنوع است.
(شکل)
ماده۱۲ـ از انواع سیستمهای مذکور تنها استفاده از سیستم اتصال به زمین نوع TN در کارخانهها و کارگاهها الزامی است. مگر آنکه نوع کارخانه یا کارگاه، استفاده از سیستمهای TT و IT را ایجاب کند که در این صورت لازم است با ذکر دلایل، اجازه مخصوص برای استفاده از این سیستمها گرفته شود.
ماده۱۳ـ هادی خنثی (N) و هادی حفاظتی (PE) باید از همدیگر مجزا باشند و فقط در یک نقطه (نقطه مبدأ) به یکدیگر وصل شوند نباید از محل جداشدن هادیهای خنثی وحفاظتی آنها را در نقطه دیگری به یکدیگر وصل کرد. علت این امر آن است که در صورت اتصال مکرر سیم نول و ارت به یکدیگر، حلقه ایجاد میشود که جریان چرخشی ناشی از آن در سیستمهای مخابراتی و الکترونیکی پارازیت یا نویز ایجاد میکند.
در سیستم قدرت خالی بودن ظرفیت جریان سیم ارت مهم است. در صورت پر بودن ظرفیت (ایجادLOOP ) سیم ارت وظیفه خود را در موقع لزوم به درستی انجام نخواهدداد.
فصل چهارم ـ انواع الکترودهای مورد استفاده در سیستم اتصال به زمین
ماده۱۴ـ سه نوع الکترود متداول و مورد استفاده در سیستم اتصال به زمین عبارتند از:
۱ـ الکترودهای صفحهای
۲ـ الکترودهای میلهای
۳ـ الکترودهای تسمهای
الکترودهای صفحهای
ماده۱۵ـ برای استفاده از این نوع الکترودها، صفحاتی از جنس مس با ابعاد حداقل ۵/۰ * ۱ متر و ضخامت حداقل ۲ میلیمتر و یا صفحاتی از جنس فولاد گالوانیزه با ابعاد حداقل ۵/۰ * ۱ متر و ضخامت حداقل ۳ میلیمتر پیشنهاد میشود.
ماده۱۶ـ الکترودهای صفحهای باید در عمقی که رطوبت زمین به طور دایمی وجود دارد، نصب گردد.
ماده۱۷ـ آمادهسازی خاک اطراف الکترود صفحهای به روش ذیل است:
ابتدا مخلوطی از نمک، خاکه زغال چوب و خاک رس را به ترتیب با نسبتهای ۱ و ۴ و ۳۵ در بیرون با آب به صورت گل درآورید و اطراف صفحه الکترود را حداقل تا ۲۰ سانتیمتر بالاتر از لبه بالایی صفحه با این مخلوط پر کنید. سپس خاک رس سرند شده را در داخل چاه بریزید و به طور متناوب به آن آب اضافه کنید.
ماده۱۸ـ الکترودهای صفحهای باید به صورت عمودی نصب شوند.
ماده۱۹ـ اتصال سیم ارت به الکترود صفحهای باید حداقل در دو نقطه مجزا انجام شود.
ماده۲۰ـ برای اتصال سیم ارت به الکترود صفحهای در صورت امکان جوش نقره بهتر است و جوش احتراقی (ترمیت) نیز روش مناسبی است. ضمن اینکه استفاده از کلمپ نیز جایز است.
ماده۲۱ـ سیم اصلی اتصال به زمین (سیم ارت) متصل به صفحه مسی باید دارای سطح مقطع ۵۰ میلیمتر مربع از جنس مس باشد (سیم شماره۵۰).
ماده۲۲ـ فاصله لبه بالایی الکترود صفحهای از سطح زمین نباید از ۶۰۰ میلیمتر کمتر باشد.
ب ـ الکترودهای میلهای
ماده۲۳ـ برای استفاده از الکترودهای میلهای، میلههایی از جنس مس یا فولاد با روکش مس یا فولاد زنگنزن و یا فولاد گالوانیزه پیشنهاد میشود.
ماده۲۴ـ قطر الکترودهای میلهای از جنس مس و فولاد با پوشش مس به ترتیب ۱۲ میلیمتر و ۱۶ میلیمتر و برای میلههایی از جنس فولاد گالوانیزه ۱۶ میلیمتر پیشنهاد میشود.
ماده۲۵ـ سیم اصلی اتصال به زمین که از سر چاههای ارت یا الکترودهای میلهای گرفته شده و به شینه اصلی اتصال به زمین (ارت) وصل میشود، باید سیم مسی شماره ۵۰ باشد.
ماده۲۶ـ استفاده از الکترودهای میلهای در مناطق خشک که رسیدن به لایههای مرطوب خاک در عمق کم امکانپذیر نیست، توصیه نمیشود.
ج ـ الکترودهای تسمهای
ماده۲۷ـ در صورتی که خاک محل نصب الکترودهای صفحهای یا میلهای سخت باشد، به گونهای که حفر چاه و رسیدن به لایههای مربوط خاک عملاً غیرممکن یا دشوار باشد، میتوان از سیستم الکترودهای تسمهای استفاده کرد. بدین صورت که الکترودها در خاک، به صورت افقی قرار میگیرند.
ماده۲۸ـ از الکترودهایی به شکل تسمه مسی بدون روکش قلع با ضخامت مس حداقل ۲ میلیمتر و یا تسمه فولادی گالوانیزه گرم با سطح مقطع حداقل ۱۰۰ میلمتر مربع (۳۰ * ۵/۳ ) و یا حتی سیم مسی لخت با سطح مقطع ۲۵ میلیمتر مربع (قطر ۶/۵ میلیمتر) میتوان به عنوان الکترود افقی استفاده کرد.
ماده۲۹ـ ضخامت الکترود تسمهای نباید بیش از یک هشتم پهنای آن باشد.
ماده۳۰ـ عمق دفن الکترودتسمهای و پهنای آن تأثیر نسبتاً کمی روی مقاومت دارند. بنابراین، عمق دفن الکترودهای تسمهای (افقی) بین ۶/۰ تا ۲ متر پیشنهاد میشود.
ماده۳۱ـ علاوه بر سیم تسمهای شکل میتوان از سیم گرد نمره ۵۰ نیز به عنوان الکترود تسمهای استفاده کرد.
ماده۳۲ـ طول الکترودهای افقی تسمهای یا سیم گرد، در چهار وضعیت تک رشتهای ( ـ ) ، و دو رشته عمود برهم ( ? )، سه رشته با زاویه ۱۲۰ درجه نسبت به یکدیگر ( Y ستاره)و چهار رشته عمود بر هم (صلیبی + ) مطابق جدول شماره (۱) برای دو نوع خاک رس و خاک آهکدار مشخص شده است.
(جدول۱: طول الکترودهای تسمهای (افقی) در چهار وضعیت مخلتف برای دو نوع خاک)
ماده۳۳ـ سیم اتصال به زمین متصل به الکترود تسمهای باید نمره ۵۰ از جنس مس باشد.
فصل پنجم ـ مقاومت ویژه خاک و محل نصب الکترودها
ماده۳۴ـ مقاومت یک الکترود اتصال به زمین به مقاومت ویژه الکتریکی خاکی که الکترود در آن نصب شده است، بستگی دارد. به همین جهت، این عامل میتواند به منظور تصمیمگیری در انتخاب سیستمهای حفاظتی مهم باشد.
ماده۳۵ـ مقاومت ویژه خاک به میزان رطوبت خاک و ترکیبات شیمیایی و نمکهای محلول موجود در خاک و اندازه و توزیع دانهها و نزدیکی آنها به یکدیگر بستگی دارد.
مقاومت ویژه بعضی از انواع خاک برحسب اهم ـ متر در جدول شماره۲ آمده است.
(جدول۲: مقاومت ویژه بعضی از انواع خاک بر حسب اهم ـ متر)
ماده۳۶ـ محل نصب الکترود بر حسب انواع خاک به ترتیب ذیل انتخاب میشود:
الف) زمین باتلاقی مرطوب؛
ب) خاک رس، خاک گلدانی، زمین قابل کشت، خاک گلدانی مخلوط با کمی شن؛
ج) خاک رس و خاک گلدانی مخلوط با درصدی از شن، سنگ و سنگریزه؛
د) شن خیس و مرطوب و زغال سنگ؛
ماده۳۷ـ در صورت امکان نباید از شن خشک، سنگریزه، سنگ آهک، سنگ مرمر سیاه، گرانیت و زمین خیلی سنگی یا محلهایی که در آن صخرههای خیلی نزدیک به سطح زمین وجود دارد، استفاده کرد.
ماده۳۸ـ محل نصب الکترودها باید به گونهای انتخاب شود که زهکشی آن کم باشد.
برای پایین بردن رطوبت در زمینهایی که سطح آب آنها بالاست، در قسمت انتهایی زمین کانالی حفری میشود که رطوبت اضافی آن را میگیرد تا زمین قابل استفاده باشد. بنابراین برای احداث سیستم اتصال به زمین در این گونه زمینها باید توجه شود که اگر سطح آب خیلی بالا باشد (به طوری که اطراف الکترود پر آب شود)، باعث اکسیده شدن و از بین رفتن الکترود خواهدشد. از سوی دیگر، در صورت پایین بودن بیش از حد رطوبت، خاک اطراف الکترود خشک شده، مقاومت الکتریکی آن بالا رفته و در نتیجه جریان اتصالی را به راحتی به زمین انتقال نمیدهد. بنابراین برای تنظیم رطوبت خاک، عمق کانال زهکشی باید مناسب باشد.
ماده۳۹ـ از محلهایی که رطوبت آن ناشی از عبور جریان آب است (مانند بستر رودخانهها)، باید اجتناب شود. زیرا در چنین شرایطی ممکن است نمکهای سودمند کاملاً شسته شوند.
ماده۴۰ـ استفاده از لوله پلاستیکی یا فلزی برای آب دهی چاه ارت بلامانع است. به ویژه اگر همراه با بیکربنات دو سود باشد. (در فصل خشک).
ماده۴۱ـ در محلهای ساختمانی یا مکانهایی که عملیات کندن و خاکبرداری و خاکریزی و انجام شده، با توجه به امکان تغییر شرایط محلی، الکترودها باید در عمق بیشتر دفن شوند.
ماده۴۲ـ محل نصب الکترودها باید به گونهای انتخاب شود که کود و سایر و مواد دیگر به آن تراوش نکند.
ماده۴۳ـ در مناطقی که مقاومت ویژه خاک زیاد است، میتوان خاک محل چاه و اطراف الکترود را با خاک آمادهسازی شده جایگزین کرد.
ماده۴۴ـ در مناطق شمال کشور مانند گیلان و مازندران که رطوبت دایمی در سطح زمین وجود دارد، بهتر است از الکترودهای میلهای استفاده شود.
ماده۴۵ـ در مناطق خشک کویری و نیز در مناطقی که خاک زمین آنها دج (سفت) است، استفاده از الکترودهای افقی پیشنهاد میشود.
ماده۴۶ـ در زمینهای آبرفتی (زمینهایی که در مسیر رودخانهها واقع شدهاند و مواد کانی آنها شسته شده است) باید از الکترودهای افقی استفاده شود و خاک اطراف الکترود تعویض (آمادهسازی) شود.
ماده۴۷ـ الکترودهای صفحهای تنها در مناطقی نصب میشوند که رطوبت کافی دراعماق زمین وجود داشته باشد.
ماده۴۸- آماده سازی خاک فقط برای تأسیسات الکتریکی موقت میتواند اقتصادی ترین راه باشد و برای تأسیسات با طول عمر بیشتر شاید بهتر باشد خاک اطراف الکترودها با مواد ذیل که مقاومت ویژه پایین تری دارند، تعویض شود:
الف) بنتونیت: ماده جاذب رطوبت است.
ب) بتون: مخلوطی از شن و ماسه و سیمان و آب است.
ج) بتون هادی که در آن به جای شن معمولی از دانه های زغالی استفاده شده است.
ماده۴۹ـ در صورت استفاده بیش از یک الکترود (صفحه ای یا میله ای) حداقل فاصله دو الکترود باید برابر با عمق دفن آنها باشد.
ماده۵۰ ـ در مواردی که کارگاه در مناطق مرطوب قرار گرفته باشد، کلیه تجهیزات باید بادوام بوده و به طور مرتب بازرسی شوند و نسبت به زمین کردن آنها و مدارهای حفاظتی توجه خاص به عمل آید.
فصل ششم ـ الکترودهای متفرقه
ماده۵۱ ـ ترمینال اصلی سیستم اتصال زمین باید قابل دسترسی باشد تا بتوان در صورت لزوم تأسیسات را از سیستم اتصال به زمین جدا کرده و اندازه گیریهای مربوط بهاتصال به زمین را به راحتی انجام داد.
ماده۵۲ ـ الکترودهای متفرقه، اجزای هادی تأسیسات و تجهیزاتی از جنس مس، آهن، فولاد و غیره هستند که در ساختمانها و تأسیسات مربوط به آن برای مصارف ویژه به کارگرفته می شوند و درهمبندی برای پایین آوردن مقاومت کل مورد استفاده قرار میگیرند.
ماده۵۳ ـ غلافهای فلزی و زره کابلها را که معمولاً به منظور ایجاد مسیری برای هدایت جریان اتصالی به نقطه خنثای منبع در محل ترانسفورماتور مورد استفاده قرار میگیرد، می توان به عنوان الکترود متفرقه محسوب کرد، به شرطی که حداقل بهطور۳۰۰ متر در زیر خاک مدفون باشد.
ماده۵۴ ـ سازه های قسمتهای فلزی که در پیهای بتونی ساختمان قرار گرفتهاند، می توانند به عنوان یک الکترود اتصال به زمین موثر و آماده به حساب آیند. سطح کل الکترودی که توسط اجزای فلزی در پی ساختمانهای بزرگ ایجاد میشود، میتواند مقاومت الکتریکی کمتری را نسبت به زمین البته در مقایسه با روشهای دیگر ایجاد کند.
مقاومت اجزای فولادی مستقر در حجم بتون یا میلگردهای به کار رفته در بتون نسبت به زمین برحسب نوع خاک و میزان رطوبت آن و شکل پی متفاوت خواهد بود. بتون جاذب رطوبت است، به ویژه در مناطق غیرخشک، هنگام قرار گرفتن در درون خاک، مقاومت ویژه ای در حدود ۳۰تا۹۰ اهم متر دارد که کمتر از بعضی از انواع خاک است.
ماده۵۵ ـ مقاومت الکتریکی قسمتهای فلزی که به عنوان الکترود مورد استفاده قرار میگیرند، باید نسبت به زمین، اندازه گیری و در فواصل زمانی منظم مقدار آن کنترل شود.
ماده۵۶ ـ باید از برقراری اتصال الکتریکی بین کلیه اجزای فلزی که جزء الکترود اتصال به زمین محسوب میشوند، اطمینان حاصل شود.
ماده۵۷- برای اتصال الکتریکی بین اجزای فلزی به کاررفته در حجم بتون یا در زیر سطح زمین مانند میلگردهای بتون، بهترین روش جوشکاری در بالای سطح زمین است.
ماده۵۸- در مورد پیچهای مهار (انکربولت) این کار معمولاً از طریق دو زدن هر محل اتصال سازهای به کمک یک هادی همبندی انجام میشود. این امر به ویژه در مورد سطوحی که ممکن است قبل از نصب، رنگ بخورند، صورت میگیرد.
ماده۵۹- الکترود چنبرهای:
نوعی الکترود است که در بعضی مناطق و برای مصارف پایین شدت جریان میتواند مورد استفاده قرار گیرد. در این روش از سیم لختی با نمره۵۰ به صورت چنبرهای با شعاع بیرونی۴۰ سانتی متر تعداد۵ حلقه (که در ته چاه اتصال به زمین (ارت) قرار میگیرد) استفاده میشود.
ماده۶۰- در کارگاههای کوچک نیز ایجاد سیستم اتصال به زمین مناسب با استفاده از الکترودهای صفحهای، میلهای و یا تسمهای الزامی است و همبندیها نیز طبق معمول اجرا میشود.
ماده۶۱ ـ در کارگاهها و کارخانههای بزرگ، نمیتوان از الکترودهای متفرقه بهعنوان الکترودهای اصلی سیستم اتصال به زمین استفاده کرد. در این حالت علاوه بر ایجاد سیستمهای اتصال به زمین مطمئن باید الکترودهای متفرقه را نیز با آنها همبندی کرد.
ماده۶۲ ـ برای تأسیسات نمیتوان از لوله های آبرسانی عمومی، لولههای گاز، نفت، هوای فشرده و فاضلاب به عنوان تنها وسیله اتصال به زمین استفاده کرد.
ماده۶۳ ـ سیم نول باید به نحو موثری به زمین وصل شده باشد تا در صورت بروز اتصالی بین سیم فاز و یک سیم اتصال به زمین با مقاومت کم (غیر از اتصال مستقیم فاز و نول) مثلاً از طریق لولهکشی آب، ولتاژ سیم نول نسبت به اتصال زمین از مقدار مجاز۵۰ ولت تجازو ننماید. بنابراین مقدار مقاومت سیم نول باید یک اهم یا کمتر باشد. (با اتصال به هادیهای بیگانه).
تبصره:
منظور از مقاومت نول، کل مقاومت سیم نول است که ممکن است شامل چندین الکترود اتصال به زمین در نزدیکی پست ترانسفورماتور یا ژنراتور و اتصالات زمین کابلهایی با غلاف فلزی، اتصالات زمین خطوط هوایی در ابتدا و انتهای هر خط اصلی و غیره باشد.
ماده۶۴- مقاومت کل سیستم الکترودهای اتصال به زمین (بدون اتصال به نول) باید کمتر از ۲اهم باشد.
ماده۶۵ـ مقاومت کل الکترودهای اتصال به زمین تا شعاع ۱۰۰متری پست برق نباید از ۵ اهم تجاوز کند.
ماده۶۶ ـ مقاومت کل الکترودهای اتصال به زمین مدارهای تغذیه کارگاهها و کارخانهها اعم از هوایی یا کابلی (باغلاف فلزی یا غلاف عایق) که طول آنها۲۰۰ متر باشد، نباید از ۵ اهم تجاوز نماید.
ماده۶۷ ـ چنانچه طول سوله (ساختمان، کارگاه و غیره) یا فاصله سولهها نسبت بهیکدیگر بیشتر از ۲۰۰متر باشد، باید میان آنها چاه اتصال به زمین (چاه ارت) احداث شود و مقاومت کل آن نباید از۵ اهم تجاوز کند (شکل۸)
ماده۶۸ ـ به کارگرفتن الکترودی با حداقل مقاومت ۵ اهم در۱۰۰ متری پست برق برای پوشش دادن منطقه در موارد بحرانی، الزامی است.
(شکل)
ماده۶۹ ـ استفاده از الکترودهای زمین در فاصله۲۰۰ متری پست باعت میشود که در صورت بروز اتصالی بین یک هادی فاز و هادی حفاظتی، ولتاژ هادی حفاظتی و بدنههای هادی متصل به آن، به زمین نزدیکتر شده و در نتیجه ولتاژ تماس یا ولتاژ برق گرفتگی نیز کمتر میشود. (گستردگی زمین باعث کاهش راکتانس زمین میشود، در صورتی که راکتانس سیم با افزایش طول افزایش مییابد).
ماده۷۰ـ در صورتی که تعداد پست برق دو یا بیشتر باشد، اگر پستها در حوزه همدیگر قرار گرفته باشند، مجموع مقاومت الکترودهای حفاظتی ۲اهم برای هر دو پست کافی است. اما اگر حوزه پستها جدا باشد، یعنی پستها نسبت به همدیگر در فاصله دورتر قرار گرفته باشند، در آن صورت باید مقاومت الکترودهای زمین هر پست به تنهایی۲ اهم باشد و سپس با سیم رابط مناسبی به همدیگر اتصال داده شوند.
فصل هفتم ـ همبندی سیستم
ماده۷۱ـ همبندی سیستم عبارت است از اتصال اجزای مختلف سیستم اتصال بهزمین به یکدیگر به منظور هم پتانسیل کردن قسمتهای مختلف تأسیسات.
ماده۷۲ـ به منظور هم پتانسیل کردن، باید قسمتهایی از هادیهای بیگانه بهترمینال اصلی اتصال به زمین (ارت) تأسیسات همبندی شوند که عبارتند از:
لولههای فلزی گاز و نفت و آب و هوای فشرده، فاضلاب، لولهها و مجراها و سایر سرویسها، سیستمهای حرارت مرکزی تهویه هوا، قسمتهای فلزی در دسترس ساختمان و صاعقهگیر.
ماده۷۳ـ سیمهای همبندی لولههای آب و گاز باید تا حد امکان نزدیک به نقطه ورود آنها به ساختمان باشد (بعد از کنتور در طرف مصرف کننده و قبل از انشعاب لولهها).
تبصره:
در مورد کنتورهای نصب شده در داخل ساختمان، اتصال باید در فاصله حدوداً ۶۰۰ میلیمتر از کنتور باشد.
ماده۷۴ـ انشعاباتی از سیم اتصال به زمین باید برای تجهیزات کمکی مانند تابلوهای کنترل ورله، اجزای فلزی سازهها و تأسیسات اطفای حریق در نظر گرفته شوند.
ماده۷۵ـ اتصالات انشعابی باید از شینه اصلی اتصال به زمین برای هر یک از دستگاههای تأسیسات برده شوند.
ماده۷۶ـ در صورتی که چند دستگاه در کنار یکدیگر قرار داشته باشند، به جای انشعابات طولانی از شینه اصلی، از یک حلقه کمکی با انشعابات کوتاه استفاده شود.
ماده۷۷ـ قسمتهای هادی بیگانه سیستم باید به کلیه بدنههای هادی که بطور همزمان در تماس هستند، اتصال فلزی مستقیم داشته باشند.
تبصره:
اگر این اتصال از طریق تجهیزاتی که به قسمتهای فولادی مشترک وصل است، امکانپذیر نباشد، باید بدنههای هادی و قسمتهای هادی بیگانه با استفاده از سیمهای همبندی به یکدیگر متصل شوند.
ماده۷۸ـ در مواردی که دو یا چند ایستگاه در نزدیکی یکدیگر قرار داشته و یک واحد به حساب آیند، سیستمهای زمین آنها باید با یکدیگر همبندی شوند، به طوری که کل منطقه تحت تأثیر یک سیستم زمین قرار گیرد. اگر ایستگاهها دارای فصل مشترکی با یکدیگر باشند، دو جبهه مماس سیستمهای زمین آنها باید به یکدیگر وصل شوند تا کل منطقه با یک سیستم زمین پوشش داده شود. در صورتی که فاصله بین دو ایستگاه آن قدر زیاد باشد که نتوان آنها را دو ایستگاه مجاور هم به حساب آورد، هادی زمین رابط با سطح مقطع کافی باید پیشبینی شود تا اطمینان حاصل شود که جریان اتصالی از طریق زره یا غلاف کابلها برقرار نخواهد شد (به دلیل جلوگیری از آسیب دیدن عایق کابل در اثر ایجاد حرارت جریان اتصالی، زیرا هادی تحمل گرمای زیاد را دارد)
ماده۷۹ـ در کارخانهها برای اتصال زمین پستها به یکدیگر نمیتوان از زره یا غلاف کابلها استفاده نمود.
ماده۸۰ ـ در کارخانههایی که دو پست یا بیشتر، سالن واحدی را که دارای اسکلت فلزی است تغذیه میکنند، وجود سیم رابط الزامی است و استفاده از اسکلت فلزی کافی نیست زیرا مقاومت آهن از سیم مسی بالاتر است.
ماده۸۱ ـ اگر دو پست مجزا هر کدام ساختمان مجزایی را که دارای اسکلت فلزی است، تغذیه کنند، برای اتصال دو پست به یکدیگر باید از سیم رابط مسی با سطح مقطع کافی جهت اتصال نولهای دو پست به یکدیگر استفاده نمود و اتصال دو اسکلت فلزی به وسیله یک هادی با سطح مقطع کافی به صورت هوایی با زمینی کافی نیست.
ماده۸۲ ـ اتصال زمین کارخانههای مجاوز (همسایه)ـ با پستهای مجزاـ به یکدیگر منطقی نیست و تنها در صورت توافق مالکین میتوان زمینهای آنها را به یکدیگر متصل کرد.
ماده۸۳ ـ برای جلوگیری از ایجاد جرقه (در اثر اختلاف پتانسیل)، صاعقهگیر، مخازن مواد شیمیایی قابل اشتعال و اتصال به زمین برق ـ در صورتی که زمین آنها یکی باشد باید همبندی شوند.
تبصره:
در صورت جدا بودن منابع شیمیایی آتشزا میتوان اتصال به زمین جداگانهای را برای آنها در نظر گرفت.
فصل هشتم ـ انتخاب نصب هادی زمین
ماده۸۴ ـ هادی زمین (سیم اتصال به زمین) قسمتی از سیستم زمین است که الکترود زمین را به ترمینال اصلی زمین وصل میکند.
ماده۸۵ ـ از آلومینیوم لخت یا آلومینیوم دارای پوشش مس نباید در تماس با زمین چه به عنوان الکترود و چه به عنوان هادی زمین استفاده کرد. در محیطهای مرطوب نیز نباید از این مواد به عنوان هادی زمین استفاده نمود.
ماده۸۶ ـ سیم هادی زمین (سیم اصلی اتصال به زمین) باید از نظر مکانیکی استحکام لازم را داشته باشد.
ماده۸۷ ـ هادی اتصال به زمین باید در مقابل خوردگی شیمیایی و الکترو شیمیایی استحکام لازم را داشته باشد.
تبصره:
منظور از خوردگی شیمیایی اثر مواد شیمیایی خاک برروی فلز هادی اتصال زمین و منظور از خوردگی الکترو شیمیایی تشکیل پیل به وسیله فلزات ناهمگون در زمین است. (مانند مس و فولاد که مس نسبت به فولاد قطب مثبت تشکیل داده، سبب خوردگی سریع خواهد شد.
ماده۸۸ ـ برای اطمینان از استحکام سیم اتصال به زمین سطح مقطع آن طبق جدول۳ انتخاب میشود.
ماده۸۹ ـ سیم لخت اتصال زمین تا حد امکان نباید از داخل لولههای فلزی عبور کند. زیرا قبل از اتصال سیم ارت به شینه اتصال به زمین (ارت)، سیم اتصال زمین (ارت) نباید با زمین اتصال داشته باشد و در صورت استفاده از لولههای فلزی امکان اتصال وجود دارد.
تبصره: تنها در جاهایی که امکان آسیب دیدن سیم حفاظتی وجود دارد، استفاده از لوله فلزی پیشنهاد میشود.
ماده۹۰ ـ هادی مسی لخت نباید در طول مسیر تا محل اتصال به هادی خنثی با هادی خنثی یا زمین، تماس الکتریکی داشته باشد. زیرا اگر مقاومت الکترود زمین زیادتر از حد مجاز شود، یا سیم اتصال زمین از الکترود ارت قطع گردد، به هنگام اتصال کوتاه ایجاد ولتاژ تماس خواهد کرد.
ماده۹۱ـ چنانچه سطح مقطع هادیهای فاز کمتر از۱۰ میلیمتر مربع باشد، هادی خنثی (نول) و حفاظتی (ارت) باید از یکدیگر مجزا باشند و در مورد سطح مقطع هادیهای فاز برای۱۰ میلیمتر مربع و بیشتر میتوان از یک هادی مشترک به عنوان هادی خنثی (نول) و حفاظتی استفاده کرد.
(جدول۳: سطح مقطع سیمهای به کار رفته در سیستم اتصال به زمین (mm2))
ماده۹۲ـ وجود شینه اتصال به زمین (ارت) در تابلوی اصلی الزامی است، به طوری که سیم اتصال به زمین از الکترود به این شینه آمده و سپس از ترمینال اصلی بهقسمتهای مختلف منتقل میشود.
ماده۹۳ـ وجود شینه نول در تابلوی اصلی الزامی است.
ماده۹۴ـ در سیستم TN-C-S که در اکثر موارد مورد استفاده است، اتصال شینه نول به شینه ارت در تابلوی اصلی ـ و فقط در تابلوی اصلی ـ الزامی است.
ماده۹۵ـ با توجه به اینکه شینه نول از طریق سیم اتصال زمین به بدنه تابلو وصل است برای تسهیل در عیب یابی آن را باید روی مقره عایق سوار کنند.
ماده۹۶ـ سیمهای اتصال به زمین (ارت) را میتوان از شینه اصلی اتصال به زمین (ارت) به صورت دستهای به قسمتهای فلزی هر جزء از تجهیزات وصل کرد.
ماده۹۷ـ در صورت دفن سیمهای ارت فولادی یا مسی لخت در زمین، اگر این سیمها به منظور کاهش مقدار مقاومت اتصال به زمین ایستگاه در نظر گرفته شده باشد (به عنوان الکترود محسوب شود)، باید حداقل در عمق ۲۵ سانتیمتری زمین دفن کرد.
ماده۹۸ـ از سیم آلومینیوم نمیتوان به عنوان سیم ارت دفن شده در زمین استفاده کرد.
تبصره:
از سیم آلومینیومی تنها در صورتی میتوان در زیر سطح زمین استفاده کرد که در برابر تماس با خاک و رطوبت حفاظت شده یا دارای غلاف مناسب باشد.
ماده۹۹ـ هنگام دفن سیمهای چند مفتولی باید دقت شود که مفتولها از یکدیگر جدا نشده و شکل اصلی سیم حفظ شود.
ماده۱۰۰ـ اگر سیمهای ارت مدفون در زمین در برابر خوردگی حفاظت شده باشد، اما دارای حفاظت مکانیکی نباشد، برای مس و فولاد گالوانیزه گرم، سطح مقطع باید بیش از ۱۶ میلیمتر باشد.
ماده۱۰۱ـ در صورتی که سیم مدفون در زمین در برابر خوردگی حفاظت نشده باشد، سطح مقطع برای سیم مسی باید بیش از ۲۵ میلیمتر مربع و برای سیم فولادی بیش از ۵۰ میلیمتر مربع باشد.
ماده۱۰۲ـ ضخامت سیم تسمهای بیحفاظ دفن شده در زمین برای فولاد گالوانیزه نباید از۳ میلیمتر کمتر باشد.
ماده۱۰۳ـ ضخامت سیم تسمهای بی حفاظ دفن شده در زمین برای مس نباید کمتر از۲ میلیمتر باشد.
ماده۱۰۴ـ هنگام اتصال سیم اصلی اتصال زمین (ارت) به الکترود، مواد به کار رفته در اتصالات باید با مواد بکار رفته در الکترود و سیم اتصال به زمین سازگار باشد تا میزان خورندگی گالوانیک به حداقل برسد.
ماده۱۰۵ـ مواد بکار رفته در اتصالات باید از نظر استحکام مکانیکی مقاوم باشند و به گونهای محکم اتصال را برقرار نمایند.
ماده۱۰۶ـ اتصال الکترودهای صفحه مسی به سیم اتصال به زمین باید از نوع اتصال دهنده مسی، جوش یا پرچ باشد. محل این اتصال باید با پوشش ضخیمی از قیر یا مواد مناسب دیگر حفاظت شود.
ماده۱۰۷ـ برای اتصال انشعابی سیمهای چند مفتولی به سیم اصلی اتصال زمین میتوان از اتصالات نوع فشاری (کلمپ) استفاده نمود.
در صورت استفاده از بستهای پیچی، پیچها باید گشتاوری حداقل برابر ۲۰ نیوتنمتر را تحمل کنند.
ماده۱۰۹ـ در صورت استفاده از تسمه به عنوان سیم اتصال به زمین و اتصال آن بهتجهیزات نباید تسمه را برای پیچی که قطر آن از یک سوم پهنای تسمه بیشتر است، سوراخ کرد.
ماده۱۱۰ـ اتصالات آلومینیوم به آلومینیوم میتواند با استفاده از روشهای جوش قوس تنگستن ـ گاز خنثی(TIG) خنثی، یا جوش قوس فلزـ گازخنثی (MIG) ، جوشکاری با گاز اکسی استیلن یا لحیم سخت یا لحیم سردپرسی، اتصال پرسی و اتصال پیچی انجام شود.
ماده۱۱۱ـ اتصال بین آلومینیوم و مس باید از نوع پیچی، جوش سرد و یا جوش مالشی باشد و در ارتفاع حداقل۲۵۰ میلیمتری از سطح زمین قرار گرفته باشد.
ماده۱۱۲ـ اتصالات بین مس و مس میتواند با یکی از روشهای لحیم کاری سخت فاقد روی با نقطه ذوب حداقل۶۰۰ درجه سانتیگراد، پیچ کردن، لحیم کاری فشاری، جوشکاری حرارتی و جوشکاری پرس سرد انجام شود.
ماده۱۱۳ـ هنگام اتصال سیم اتصال به زمین (ارت) به تجهیزات، اگر فلز رنگ شده باشد، باید هنگام وصل به قسمتهای فلزی گالوانیزه، قلع اندود کرد.
ماده۱۱۴ـ در تأسیساتی که اتصال سیم همبندی اتصال زمین به تجهیزات در معرض خوردگی قرار دارد، باید از طریق رنگ ماستیک قیری یا لفاف حفاظتی مناسب این اتصالات حفاظت شوند.
ماده۱۱۵ـ اتصالات زمین به برقگیرها باید دارای سطح مقطع کافی بوده و تا حد امکان راست و مستقیم باشد و این اتصالات نباید از لولههای آهنی یا سایر اجزای آهنی یا فولادی ـ که باعث افزایش امپدانس ضربه میشوند ـ بگذرد.
ماده۱۱۶ـ اتصالات سیم اتصال به زمین به تجهیزات تا حد امکان باید به گونهای باشد که سطوح تماس در یک صفحه قائم قرار گیرند.
ماده۱۱۷ـ در مواردی که از غلاف فلزی و زره فلزی کابل استفاده شود، غلاف و زره باید با لحیم کاری به یکدیگر همبندی شده و اتصال اصلی هادی حفاظتی به کابل با لحیم کاری به زره انجام شود.
فصل نهم ـ اندازهگیری مقاومت الکتریکی الکترود زمین
ماده۱۱۸ـ منظور از مقاومت الکترود، مقاومت حجم خاکی است که الکترود راحاطه میکند و به اصطلاح حوزه مقاومت الکترود زمین گفته میشود.
ماده۱۱۹ـ هنگام اندازهگیری مقاومت الکتریکی الکترودهای اتصال به زمین، در صورتی که به هیچ عنوان امکان جداسازی الکترودها و اندازهگیری مقاومت الکتریکی مستقل آنها وجود نداشته باشد، با در نظر گرفتن کلیه اصول ایمنی و حصول اطمینان از پیوستگی، اندازهگیری مقاومت کل کافی است.
ماده۱۲۰ـ هنگام اندازهگیری مقاومت الکتریکی الکترود اتصال به زمین، به هیچ عنوان باز کردن نول ورودی (نول اداره برق) مجاز نیست.
ماده۱۲۱ـ در کارخانههایی که دارای چاههای اتصال به زمین متعدد هستند، با حصول اطمینان از پیوستگی همه آنها مقاومت کل اندازهگیری میشود.
ماده۱۲۲ـ در کارخانههایی که قطع برق آنها به هیچ عنوان مجاز نیست، ابتدا باید مقاومت کل اندازهگیری شود و در صورتی که این مقدار زیر یک اهم باشد، با اطمینان از همبندی کامل میتوان چاهها را تک تک از مدار خارج کرد و مقاومت الکتریکی مستقل آنها را اندازهگیری نمود.
ماده۱۲۳ـ در کارخانههایی که الکترودهای قابل قبول چاه و اسکلت فلزی توأماً مقاومتی زیر حد مجاز دارند، با در نظر گرفتن کلیه موارد ایمنی و پیوستگی موضوع حل میشود.
ماده۱۲۴ـ در شرایط اضطراری و استثنایی با تبعیت از رابطه ذیل مقاومت بیش از ۲اهم قابل قبول است.
«هرگاه برای مجری مقررات ثابت شود که دریک منطقه، مقاومت اتصال اتفاقی بین یک هادی فاز و جرم کلی زمین (از راه تماس مستقیم هادی فاز با زمین یا هادیهای بیگانه که به هادی خنثی یا حفاظتی وصل نیستند) از ۷ اهم بیشتر است، مجری مقررات میتواند به جای ۲ اهم کل مقاومت مجاز نسبت به جرم کلی در آن منطقه مقدار جدیدی را که از رابطه ذیل بدست میآید، مجاز اعلام کند:
(فرمول)
که درآن:
= RS مقاومت کل مجاز جدید (به جای۲ اهم) برحسب اهم
= RE مقاومت اتفاقی اتصال فاز به زمین (مقدار تجربی آماری)
= Uo ولتاژ اسمی بین فاز و خنثای سیستم (۲۲۰ ولت در موارد عادی) برحسب ولت
= ۵۰ ولتاژ مجاز تماس برحسب ولت
فصل دهم ـ اتصال به زمین تجهیزات تولید برق
ماده۱۲۵ـ اتصال به زمین تجهیزات تولید برق برای محدود کردن پتانسیل هادیهای حامل جریان نسبت به جرم کلی زمین انجام میشود و این کار به منظور حفاظت در برابر خطر برق گرفتگی در اثر تماس غیرمستقیم ضروری است.
ماده۱۲۶ـ حفاظت از مولدهای برق از طریق اتصال بدنههای هادی مولد و قسمتهای هادی بیگانه به ترمینال اصلی اتصال به زمین انجام میشود.
ماده۱۲۷ـ ترمینال اصلی اتصال به زمین به یک الکترود اتصال به زمین مستقل متصل میشود و در موارد مقتضی به سایر امکانات اتصال به زمین مربوطه به تأسیسات وصل میگردد.
ماده۱۲۸ـ در مواردی که تأسیسات با بیش از یک منبع انرژی تغذیه شوند (مانند برق شهر و یک مولد) سیستم اتصال به زمین باید طوری طراحی شود که هر یک از منابع بتوانند مستقل از منابع دیگری کار کنند و اتصال به زمین خود را حفظ کنند.
ماده۱۲۹ـ بهتر است برای هر مولدی که تأسیسات متصل به شبکه توزیع برق عمومی را تغذیه میکند، اتصال به زمین مستقل انتخاب شود.
ماده۱۳۰ـ در ماشینهای مولد فشار ضعیف سنکرون یا آسنکرون که با برق شبکه تحریک میشود، اگر در سیمپیچهای ماشین نقطه خنثی وجود داشته باشد، این نقطه نباید اتصال شود و بدنههای هادی و قسمتهای هادی بیگانه باید به ترمینال اصلی اتصال به زمین تأسیسات وصل شوند.
ماده۱۳۱ـ در مورد مولدهایی که میتوانند مستقل از منبع برق شبکه کار کنند، اگر تنها یک مولد وجود داشته باشد، هر دو اتصال زمین حفاظتی و اتصال زمین سیستم از طریق وصل نقطه خنثای مولد به بدنه مولد و قسمتهای هادی بیگانه به یک ترمینال اصلی اتصال زمین با استفاده از یک الکترود اتصال زمین مستقل ایجاد شوند.
ماده۱۳۲ـ در مورد مولدهایی که به عنوان منبع ذخیره یا منبع اضطراری بکار میروند، اگر تنها یک مولد فشار ضعیف وجود داشته باشد، نقطه خنثای سیم پیچهای آن، بدنه مولد، کلیه قسمتهای هادی در دسترس و قسمتهای هادی بیگانه باید به ترمینال اصلی اتصال زمین وصل شوند و این ترمینال اتصال زمین باید به یک الکترود اتصال به زمین مستقل وصل گردد.
ماده۱۳۳ـ در صورتی که چند مولد به طور موازی به یکدیگر متصل باشند، اتصال زمین حفاظتی بدنههای مولد و قسمتهای فلزی مربوط به آن، مشابه اتصال زمین مربوط به یک مولد خواهد بود. ولی اتصال زمین سیستم برای سیم پیچها، تحت تأثیر جریانهای دوار قرار خواهد داشت (به دلیل امکان وجود جریان در سیستمهای اتصال زمین).
ماده۱۳۴ـ برای رفع مشکل جریان جاری شده در سیم اتصال به زمین سیمپیچهای چند مولد که بطور موازی به یکدیگر وصل شدهاند، روشهای ذیل را میتوان بکار برد:
الف) وصل یک ترانسفورماتور اتصال زمین خنثی بین فازها و زمین
ب) وصل نقطه خنثای مولدها به یکدیگر و اتصال نقطه خنثای یک مولد به سیم ارت
ج) استفاده از یک رآکتور مناسب در محل وصل خنثای هر مولد که باعث تضعیف جریانهای فرکانس بالا شود، بدون آنکه امپدانس قابل توجهی را در فرکانس اصلی از خود نشان دهد.
ماده۱۳۵ـ در مولدهای سه فاز سیار فشارضعیف، سیم پیچهای مولدی را که تازه از کارخانه تحویل داده شدهاند، نمیتوان به بدنه ماشین وصل کرد. در این حالت ترمینالهای سه فاز و اتصالات نقطه خنثی باید جداگانه به جعبه ترمینال مولد یا پریز خروجی وصل شوند. همچنین نقطه ستاره سیم پیچهای مولد باید به یک نقطه مرجع مشترک وصل شود.
تبصره:
نقطه مرجع مشترک از اتصال بدنه مولد کلیه قسمتهای فلزی در دسترس، زیربدنه یا شاسی وسیله نقلیه و کلیه سیمهای حفاظتی به یکدیگر ایجاد میشود و در صورت امکان باید به نقطه اتصال زمین هم وصل شوند.
ماده۱۳۶ـ در مولدهای سیار سه فاز فشارضعیف بهتر است که جعبه ترمینال یا پریز خروجی دارای پنج اتصال باشد: یک اتصال مجزا برای سیم اتصال زمین و چهار اتصال عادی برای سه فاز و نول.
ماده۱۳۷ـ در مولدهای سیار سه فاز فشار ضعیف چنانچه فقط چهار اتصال وجود داشته باشد، از مولدها باید صرفاً برای تأمین بارهای سه فاز متعادل استفاده کرد و اتصال چهارم برای سیم اتصال زمین در نظر گرفته شود.
ماده۱۳۸ـ در مولدهای سیار سه فاز فشار ضعیف با چهار اتصال، اتصال چهارم و سیم آن نباید به عنوان سیم مشترک ارت ـ نول (PEN)مورد استفاده قرار گیرد، زیرا در صورت قطع این سیم احتمال بروز خطر وجود خواهد داشت.
ماده۱۳۹ـ اتصال بین نقطه مرجع مشترک و اتصال زمین واقعی در محل مولد ضروری است و بین نقطه خنثی و اتصال زمین در محل مصرف از وسیله حفاظتی جریان پسماند نباید اتصال برقرار شود.
ماده۱۴۰ـ کلیه کابلهای سه فاز بهتر است دارای چهار رشته باشند و به پرده فلزی قابل انعطاف یا زرهی از سیمهای فولادی مجهز باشند تا بتوانند به عنوان سیم اتصال به زمین مورد استفاده قرار گیرند.
ماده۱۴۱ـ در مولدهای تک فاز نیز باید کابل مجهز به پرده فلزی قابل انعطاف یا زرهی از سیمهای فولادی باشد تا بتواند به عنوان یک هادی حفاظتی مجزا عمل کند.
ماده۱۴۲ـ در مواردی که به دلیل طولانی بودن کابل، مقاومت زره یا پرده فلزی آن افزایش یابد، دستیابی به یک امپدانس پایین برای حلقه اتصال به زمین را مشکل میسازد، باید از کابل پنج رشتهای برای سه فاز (و کابل سه رشتهای برای تک فاز) استفاده شود، به طوری که سیم اضافی را بتوان به صورت موازی با پرده فلزی وصل نمود.
ماده۱۴۳ـ در مورد کابلهای فاقد پرده فلزی یا غلاف سیمی، این کابلها باید از نوعی انتخاب شوند که روکش آنها در برابر سایش مقاوم باشد و به سیم اتصال به زمین جداگانه مجهز باشد.
ماده۱۴۴ـ در مواردی که ممکن است کابلها و تجهیزات در معرض خطر آسیبدیدگی قرار گیرند، میتوان نوعی حفاظت تکمیلی را به کمک وسیله حفاظتی جریان پسماند(RCD) پیش بینی کرد. این وسیله نه تنها باید هنگام وقوع اتصالی بین سیم فاز و اتصال زمین یا بدنه فلزی عمل کند، بلکه باید خطر برق گرفتگی ناشی از تماس افراد با سیمهای برقدار کابلهای آسیب دیده فاقد زره یا تجهیزاتی را که کاملاً توسط محفظه فلزی پوشیده نشدهاند، کاهش دهد.
فصل یازدهم ـ اتصال به زمین خطوط هوایی
ماده۱۴۵ـ اتصال به زمین سازههای فولادی مشبک (دکلها)، تیرهای فلزی و تیرهای بتونی نگهدارنده خطوط هوایی از طریق تماس آنها با زمین باید انجام شود.
ماده۱۴۶ـ در مناطقی که مقاومت ویژه خاک آنها بالاست، اتصال به زمین هوایی که به مقر تکیه گاه متصل است و در انتهای تغذیه به نول وصل میشود مناسب بوده و تا حدودی حفاظت در برابر رعد و برق را نیز تأمین میکند.
ماده۱۴۷ـ دکلهای فولادی ابتدای خطوط انتقال نیرو به سیستم اتصال زمین اصلی ایستگاه وصل میشوند.
ماده۱۴۸ـ در مواردی که مقرهها به تیری از جنس غیررسانا یا بازوهای افقی غیررسانا که به تیر وصل است، متصل شوند، حذف همبندی قسمتهای فلزی بالای تیر باعث تحمل ولتاژ ضربهای بیشتری خواهد شد و در این حال احتمال خرابی ناشی از جرقه فاز به فاز کاهش مییابد.
ماده۱۴۹ـ در مواردی که تجهیزاتی مانند ترانفسفورماتورها، کلیدهایی با قطع و وصل مکانیکی یا سرکابلها روی یک تیر پلاستیکی تقویت شده یا چوبی نصب شده باشند مقاومت در برابر ولتاژ ضربه وارد شده از طریق تیر کاهش مییابد و بنابراین قسمتهای فلزی روی تیر باید با یکدیگر همبندی شده و به زمین اتصال داده شوند.
ماده۱۵۰ـ مقرههای مهار باید روی مهار تیر نصب شوند.
ماده۱۵۱ـ هیچ بخشی از مقره نباید در ارتفاعی کمتر از سه متری بالای زمین قرار گیرد و لازم است که تا حد امکان بالاتر نصب شود، اما مقره باید طوری استقرار یابد که قسمت زیرین آن هیچ تماسی با سیم مهار در بالا و سیم فاز و تجهیزات برقدار نداشته باشد، حتی اگر یکی از آنها پاره، شکسته و یا شل شده باشد.
ماده۱۵۲ـ براکتهای فلزی متصل یا نزدیک به هر یک از سازههای فلزی ساختمان یا قسمتهای متصل به ساختمان که نگهدارنده سیم فاز هستند، باید به زمین متصل شوند، مگر آنکه اولاً سیم عایقدار باشد و ثانیاً توسط یک مقره نگهداشته شود.
ماده۱۵۳ـ سیم اتصال به زمین هوایی که در بالای خطوط نیروی هوایی نصب میشود، علاوه بر اینکه مسیری برای برگشت اتصال زمین ایجاد میکند، در برابر صاعقه نیز تا حدودی حفاظت به وجود میآورد.
فصل داوزدهم ـ اتصال به زمین روشنایی و تجهیزات الکتریکی مستقر در خیابانها
ماده۱۵۴ـ تجهیزات مستقر در خیابان عبارتند از: تیرهای ثابت چراغ برق، تابلوهای راهنمایی مجهز به روشنایی، کیوسکها و سایر وسایل مجهز به برق که به گونهای دایمی در خیابان نصب هستند.
ماده۱۵۵ـ تجهیزات مستقر در خیابان را میتوان از طریق سیستم TN-Sتغذیه و حفاظت کرد که در این صورت از کابل تغذیه با سیمهای فاز، نول و اتصال به زمین مجزا از یکدیگر استفاده میشود.
ماده۱۵۶ـ قسمتهای هادی در دسترس تجهیزات خیابان باید به ترمینال اتصال بهزمین تجهیزات و همچنین به ترمینال اتصال به زمین مدار تغذیه متصل شوند.
ماده۱۵۷ـ برای تغذیه و حفاظت تجهیزات خیابان میتوان از سیستم TN-C-نیز استفاده کرد. در این روش معمولاً از کابلی با سیم مشترک نول ـ اتصال زمین(PE) استفاده میشود.
ماده۱۵۸ـ در روشTNCS برای تأسیسات جدید، بدنههای هادی در دسترس باید از طریق یک سیم مسی به ترمینال نول وصل شود و سطح مقطع این سیم حداقل باید۱۰ میلیمتر مربع (سیم شماره۱۰) یا برابر با سطح مقطع سیم نول مدار تغذیه باشد.
تبصره:
اجزای فلزی کوچک مجزا که احتمال تماس آنها با قسمتهای هادی در دسترس یا قسمتهای هادی بیگانه یا با سیم اتصال به زمین کم است (مانند درهای فلزی کوچک و چارچوبهای در) نباید به ترتیب یاد شده به سیستم اتصال زمین وصل شوند.
ماده۱۵۹ـ در صورتی که مداری بیش از یک وسیله خیابان را تغذیه کند (مثلاً بهصورت حلقه)، یک الکترود اتصال زمین باید در واحد آخر یا ماقبل آن نصب شود و مقاومت اتصال زمین در هر نقطه قبل از وصل هر سیم همبندی یا سیم اتصال زمین بهترمینال نول باید کمتر از ۲۰ اهم باشد و چنانچه این مقاومت الکترود بیش از ۲۰ اهم باشد، باید الکترودهای اتصال زمین دیگری در طول مدار با فاصلههای مساوی از یکدیگر نصب شوند.
ماده۱۶۰ـ در صورتی که سیستم تغذیهTN-C باشد، ولی شرکت ناظر بر روشنایی عمومی، مایل به استفاده از کابلهایی با سیمهای مجزای اتصال به زمین نول باشد، و همچنین در مواردی که شرکت برق، ترمینال اتصال زمین را تهیه کرده ولی چاه اتصال زمین را برای استفاده در اختیار شرکت روشنایی نگذارد، شرکت ناظر بر روشنایی باید الکترود ارت حفاظتی خود را نصب کند و در این حالت سیستم اتصال به زمین باید از نوعTT باشد.
ماده۱۶۱ـ الکترود ارت نول ترانسفورماتور تغذیه(TN-C) یک جزء مهم از حلقه اتصالی است، ولی مقاومت آن نسبت به الکترود اتصال به زمین تحت کنترل شرکت روشنایی خیابان نیست و در چنین شرایطی برای اطمینان از قطع تجهیزاتی که دچار اتصال شدهاند، باید از وسایل حفاظتی جریان پسماند استفاده شود، استفاده از تیرهای چراغ برق فلزی یا اسکلت فلزی واحدهای کنترل و غیره به عنوان الکترودهای اتصال به زمین حفاظتی توصیه نمیشود.
ماده۱۶۲ـ استفاده از تیرهای چراغ برق فلزی یا اسکلت فلزی واحدهای کنترل و غیره به عنوان الکترودهای اتصال زمین حفاظتی توصیه نمیشود.
فصل سیزدهم ـ اتصال به زمین داربستهای موقت و سازههای فلزی
ماده۱۶۳ـ سازههایی که به کمک اتصال پیچی یا بستهای پیچی سوار میشوند، با توجه به تعداد اتصالات ، مسیرهای متعددی با مقاومت نسبتاً مطلوب ایجاد میکنند، اما نباید این سازه موقت فلزی را به نحوی موثر متصل به زمین دانست.
ماده۱۶۴ـ در صورتی که سازههای موقت حامل مدارهای روشنایی یا مصارف کوچک باشد، توصیه میشود که سازه با سیم حفاظتی همبندی شود.
ماده۱۶۵ـ در سازههای موقت چنانچه ولتاژ کار مدار کمتر از ۵۰ ولت(AC) باشد، نیازی به همبندی نیست.
ماده۱۶۶ـ برای استفاده از ولتاژ کار بیشتر از ۵۰ ولت(AC)، سازه فلزی به عنوان قسمتی از هادی بیگانه محسوب شده و باید با سیم حفاظتی همبندی شود.
ماده۱۶۷ـ در صورتی که سازه موقتی در کنار ساختمان بلندی نصب شده باشد، این سازه فلزی موقت باید در برابر صاعقه نیز حفاظت شود.
ماده۱۶۸ـ برای حفاظت سازه موقت فلزی در برابر صاعقه، باید این سازه، هم در بالاترین نقطه نزدیک به ساختمان و هم در سطح زمین و یا در نزدیکی آن به یک یا چند سیم حفاظتی وصل شود.
ماده۱۶۹ـ سازههای فلزی موقت ممکن است برای حفاظت کافی در برابر صاعقه بهالکترودهای ارت جداگانه نیاز داشته باشند که این امر به ساختار پیها و پایههای موقت بستگی دارد.
فصل چهاردهم ـ اتصال به زمین کاروانهای مسافرتی و توقفگاه آنها
ماده۱۷۰ـ با توجه به خطرات خاص استفاده از کاروانها، استفاده از سیستمهایPME در منابع تغذیه کاروانها ممنوع است.
ماده۱۷۱ـ سیستم اتصال به زمین ساختمانهای ثابت که در محل توقفگاه کاروانها وجود دارد، طبق روش معمول است و بهتر است از سیستمTN-C-S استفاده شود.
تبصره:
کاروانهای نصب ثابت که برای جابه جا شدن پیش بینی نمیشوند، ساختمان ثابت به حساب میآیند.
شکل (۹) روش تغذیه دستگاههای الکتریکی موجود در محل استقرار کاروان را نشان میدهد.
(شکل)
یادآوری: ممکن است حداکثر شش پریز خروجی با یکRCD محافظت شوند.
ماده۱۷۲ـ سیمهای اتصال به زمین مدار در کاروانها، یعنی سیمهایی که ترمینال اتصال به زمین پریزهای خروجی کاروان را به ترمینال اصلی اتصال به زمین وصل میکنند (مانند سیم حفاظتی کابل زیر زمینی یا سیم حفاظتی دوبل در یک خط هوایی)، باید از استحکام و یکپارچگی الکتریکی بالایی برخوردار باشند.
فصل پانزدهم ـ اتصال به زمین بندرگاه کشتیهای کوچک و قایقها
ماده ۱۷۳ـ در تأسیسات الکتریکی دریایی باید خطرات ناشی از رطوبت، مورد توجه قرار گیرد. همچنین در بندرگاههایی که در معرض جزر و مد قرار دارند، محل قرارگیری سیمها و جنس مواد به کار رفته و طراحی تأسیسات الکتریکی باید به گونهای باشد که تأثیر زیان آوری روی آنها نداشته باشد.
ماده۱۷۴ـ با توجه به خطرات خاصی که برای کشتیها و قایها وجود دارد، استفاده از سیستمهایPME در منابع تغذیه بندرگاهها ممنوع است.
ماده۱۷۵ـ در بندرگاهها، منابع تغذیه سه نوع تأسیسات را تغذیه میکنند:
الف: تأسیساتی که برای انجام کار پیشبینی شدهاند مانند تأسیسات مستقر در پیادهروها که ابزارهای دستی را نیز شامل میشود.
ب: تغذیه موقتی کشتیها و قایقها: مانند تغذیه رطوبتگیرهای کشتیها و قایقها.
ج: تغذیه کشتیها و قایقهایی که دارای سیم کشی لازم برای استفاده از شبکه برق عمومی در بندرگاه هستند.
ماده۱۷۶ـ هیچ یک از سیمهای اتصال به زمین در بندرگاه نباید از جنس آلومینیوم یا کابل غیرقابل انعطاف با عایق معدنی و روکش مس باشد.
ماده۱۷۷ـ تا حدامکان از اتصالات به سیمهای محافظ باید اجتناب شود، اما در صورت نیاز این اتصالات باید در داخل پوشش حفاظتی مناسبی قرار گیرند.
ماده۱۷۸ـ طراحی سیستم تغذیه باید طوری باشد که هر یک از نقاط سوختگیری روی کشتیها بتواند به سیم اتصال به زمین سیستم توزیع الکتریکی وصول شود.
ماده۱۷۹ـ اتصال به زمین نقاط سوختگیری کشتیها باید قبل از سوختگیری انجام شود و تا پایان مرحله سوختگیری و جداشدن لولههای تخلیه از کشتی ادامه داشته باشد.
ماده۱۸۰ـ قسمتهای فلزی محل سوختگیری باید به مخزن سوخت کشتی و سیم حفاظتی مدار کلیه سیم کشیهای حفاظتی در کشتی اتصال دایمی داشته باشد.
ماده۱۸۱ـ کلیه قسمتهای فلزی روی سطوح شناور در داخل بندرگاه که شامل تجهیزات الکتریکی بوده و یا ممکن است با تجهیزات الکتریکی در تماس باشند، باید با سیم حفاظتی سیستم همبندی شوند.
ماده۱۸۲ـ این آئین نامه در پانزده فصل و ۱۸۲ ماده و ۷ تبصره در جلسه نهایی مورخ ۲۱/۳/۸۵ شورایعالی حفاظت فنی تهیه و در تاریخ///۸۵ به تصویب وزیرکار و امور اجتماعی رسید.
ــــــــــــــــــــــــــــــــــــــ
Earth 1
Earthing 2
Earth Electrode 3
Total Earthing Resestance 4
Earthing Loop Resistance 5
(Solid) Short- Circuit Current 6
Earth Leakage Current 7
Earthing Conductor 8
Neutral Conductor 9
Protective Conductor 10
Pen Conductor 11
Main Earthing Terminal 12
Live Part 13
Earth Potential 14
Potential Gradient 15
Mobile Equipment 16
Simultaneously Accessible Ports 17
Residual Current Devise 18
Switchgear and Control Gear 19
Switch Board 20
Barrier 21
Battery 22
Cable Channel 23
Cable Tray 24
Cable Tunnel 25
Circuit 26
Distribution Circuit of an Installation 27
Circuit-Breaker 28
Design Current (of a Circuit) 29
Current Carrying Capacity 30
Over Current 31
Over Load Current 32
Conventional Operating Current 33
Direct Contact 34
Undirect Contact 35
Main Earthing Terminal 36
Electrical Equipment 37
Current Equipment 38
Fuse 39
Electrical Installation 40
Origin of an Electrical Installation Service Entrance 41
Insulation 42
Insulation (of a Cable) 43
Joint 44
Shield 45
Switch 46
Touch Voltage 47
Prospective Touch Voltage 48
Lighting Overvoltage 49
Wiring System 50
Permanent link to this article: http://peg-co.com/home/%d8%a7%d8%b1%d8%aa-%d8%af%d8%b1-%d9%85%d9%87%d9%86%d8%af%d8%b3%db%8c-%d8%a8%d8%b1%d9%82/

شارژ کنترلر در برق خورشیدی
شارژ کنترلر یا تنظیم کننده شارژ، کنترل شارژ و یا تنظیم کننده باتری (به انگلیسی: charge controller)، جریان شارژ و دشارژ باتریها را کنترل میکند.[۱] شارژ کنترلر، باتری را در مقابل شارژ اضافی و یا افزایش ولتاژ که عمر آن را کم کرده و ممکن است باعث خطراتی نیز شود، محافظت میکند. همچنین از تخلیه کامل باتری جلوگیری کرده و سرعت دشارژ باتری را متناسب با نوع باتری و به منظور حفاظت از آن، محدود میکند. (دشارژ کردن سریع باتری موجب کاهش عمر آن میشود) شارژ کنترلر هم به صورت مستقل و هم به صورت مجتمع شده داخل شارژر باتری وجود دارد.[۲]
شارژ کنترلر مستقل
شارژ کنترلرهای مستقل به صورت یک دستگاه مجزا به همراه تجهیزات برق خورشیدی و برق بادی عرضه میشود.[۳]
یک شارژ کنترلر سری و یا تنظیم کننده سری، از جاری شدن جریان به باتری پس از شارژ کامل آنها جلوگیری میکند. یک شارژ کنترلر شنت یا شارژ کنترلر موازی، ولتاژ اضافی را پس از پر شدن باتریها به یک بار موازی مانند یک هیتر برقی وصل میکند.[۴]
شارژ کنترلرهای ساده، شارژ کردن باتری را پس از یک مقدار ولتاژ تعیین شده متوقف میکنند و پس از افت ولتاژ باتری از آن مقدار دوباره آن را شارژ میکنند. روشهای مدولاسیون پهنای پالس و ردیابی نقطه حداکثر توان، از روشهای پیچیده الکترونیکی هستند که نحوه شارژ باتری را متناسب با سطح ولتاژ باتری تنظیم میکنند تا از حداکثر ظرفیت باتری استفاده شود.
یک شارژ کنترلر مجهز به MPPT ، مهندسان را از تطبیق ولتاژ پنلهای خورشیدی با ولتاژ باتری بینیاز میکند. به عنوان مثال یک پنل خورشیدی با ولتاژ ۱۵۰ ولت که به یک شارژ کنترلر مجهز به mppt وصل میشود، میتواند در شارژ کردن یک باتری ۲۴ و یا ۴۸ ولتی بکار رود. با افزایش ولتاژ پنلها (موازی کردن)، ولتاژ افزایش یافته و جریان کم میشود در نتیجه سیم نازکتر استفاده میشود بنابراین مقدار صرفه جویی در هزینه سیم، بیشتر از هزینه شارژ کنترلر خواهد بود.
بعضی از شارژ کنترلرها، دمای باتریها را برای جلوگیری از گرم شدن آنها اندازه میگیرند همچنین اطلاعات اندازهگیری شده را از طریق مودم به نقاط دور دست ارسال میکنند
منبع : ویکی پدیا
Permanent link to this article: http://peg-co.com/home/%d8%b4%d8%a7%d8%b1%da%98-%da%a9%d9%86%d8%aa%d8%b1%d9%84%d8%b1-%d8%af%d8%b1-%d8%a8%d8%b1%d9%82-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c/

بزرگترین نیروگاه خورشیدی جهان
بزرگترین نیروگاه خورشیدی جهان در هند افتتاح شد
هند قصد دارد تا پایان سال ۲۰۲۰ با افزایش ۳۰ درصدی ظرفیت انرژی خورشیدی خود، تولید برق خورشیدی را به ۱۰۰ گیگاوات افزایش دهد.
بزرگترین نیروگاه خورشیدی جهان در ایالت تامیلنادو در جنوب هند به بهرهبرداری رسید.
این نیروگاه با ظرفیت ۶۴۸ مگاوات چهارشنبه در شهر راماناتا پورام رسماً راهاندازی شد.
برق تولیدی این نیروگاه با حضور جایالالیتا، سروزیر ایالت تامیلنادو، از طریق یک ایستگاه زیرزمینی به شبکۀ اصلی برق کشور متصل شد.

گروه صنعتی ادانی این نیروگاه خورشیدی را در زمینی به مساحت ۵ هزار هکتار و با هزینۀ ۴۵٫۵ میلیارد روپیه (حدود ۶۸۰ میلیون دلار) ساخته است.
شرکت ادانی تجهیزات ساخت بزرگترین نیروگاه خورشیدی جهان را از مناطق مختلف جهان به هند آورده است. این نیروگاه با کار روزانۀ ۸ هزار و ۵۰۰ کارگر طی ۸ ماه احداث شد.
هند قصد دارد تا پایان سال ۲۰۲۰ با افزایش ۳۰ درصدی ظرفیت انرژی خورشیدی خود، تولید برق خورشیدی را به ۱۰۰ گیگاوات افزایش دهد.
Permanent link to this article: http://peg-co.com/home/%d8%a8%d8%b2%d8%b1%da%af%d8%aa%d8%b1%db%8c%d9%86-%d9%86%db%8c%d8%b1%d9%88%da%af%d8%a7%d9%87-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c-%d8%ac%d9%87%d8%a7%d9%86/

افزایش راندمان در برق خورشیدی
افزایش بازده سلولهای خورشیدی با نانو لولههای کربنی
محققان دانشگاهی، در تحقیقات خود به بررسی تأثیر حضور نانو لولههای کربنی بر بازده سلولهای خورشیدی پرداختند. دکتر محمدرضا گل و بستان فرد محقق طرح اظهار کرد: سلولهای خورشیدی حساس شونده به رنگدانه و نقاط کوانتومی، دو گونه از فناوریهای مورد استفاده در تأمین نیاز بشر به انرژی است. در سلولهای خورشیدی حساس شونده به رنگدانه، بازه جذب محدود بوده و ضریب جذب رنگدانه و طول عمر حاملها پایین است. لذا به نظر میرسد که روند افزایش بازدهی در این سلولها به اشباع رسیده است. برای حل این معضل، سلولهای خورشیدی مبتنی بر نقاط کوانتومی با محدودهی جذب قابل تنظیم و ضریب جذب بالا مطرح شدهاند. حال آنکه طول عمر کم حاملها در این نوع سلولها نیز مشکلات زیادی به همراه دارد. گل و بستان فرد، با بیان این که در این مطالعه دو نوع سلول خورشیدی مختلف مورد مقایسه قرار گرفته و میزان بازدهی آنها اندازهگیری شده است، افزود: هدف این طرح بهبود انتقال الکترون در سلولهای خورشیدی به منظور افزایش بازدهی آن بوده است.
بدین منظور نانو لولههای کربنی با قطرهای مختلف در دو نوع سلول خورشیدی نانو ساختار حساس شونده با رنگدانه و نقاط کوانتومی وارد شده و عملکرد این دو نوع سلول مورد بررسی قرار گرفته است. وی گفت: این طرح منجر به مشخصتر شدن عملکرد این دو نوع سلول و بارزتر شدن تفاوتهای آنها شده است. بر اساس نتایج مشخص شده که افزودن نانو لولههای کربنی در هر دو نوع سلول، افزایش بازدهی را در پی دارد. با این حال بهبود بازدهی در سلولهای خورشیدی حساس شونده با نقاط کوانتومی بسیار چشمگیرتر است. محقق طرح در ادامه به تفاوت دو نوع سلول خورشیدی بررسی شده اشاره و تصریح کرد: ساختار سلولهای خورشیدی حساس شونده با رنگدانه و نقاط کوانتومی به ظاهر بسیار شبیه یکدیگر است. اما در واقع شرایط عملکرد کاملاً متفاوتی دارند. با این که سلولهای خورشیدی بر پایهی رنگدانه، بازدهی بیشتری از سلولهای خورشیدی بر پایهی نقاط کوانتومی دارند، اما با افزودن نانو لولههای کربنی بیش از ۴۰ درصد بهبود بازدهی در سلولهای نقاط کوانتومی دیده شد.
حال آنکه این افزایش بازدهی در سلولهای رنگدانه تنها هشت درصد بود. وی افزود: دلیل این بهبود چشمگیر بازدهی در سلولهای نقاط کوانتومی عمدتاً به واسطهی افزایش طول عمر و طول نفوذ حاملین بار با افزودن نانو لولههای کربنی در فتوآند عنوان شده است. گل و بستان فرد خاطرنشان کرد: در روند این تحقیقات پس از تهیه سل تیتانیای مورد نظر جهت لایه نشانی لایهمتخلخل، نانو لولههای کربنی به آن اضافه شد و لایه نشانی صورت گرفت. در این مرحله فتوآند متخلخل سلسله مراتبی کامپوزیتی ایجاد شد. سپس بسته به نوع سلول، فتوآند توسط رنگدانه یا نقاط کوانتومی کادمیم سلناید (از پیش سنتز شده توسط روش سولوترمال) حساس سازی شده و با افزودن کاتد و الکترولیت مورد نظر هر سلول، فرآیند ساخت تکمیل شد.
وی گفت: بررسیهای صورت گرفته بر روی نمونهها شامل پراش پرتو X، میکروسکوپ الکترونی روبشی نشر میدانی، میکروسکوپ عبوری وضوح بالا، میکروسکوپ نیروی اتمی، طیف سنجی رامان و FTIR، طیف سنجی بازتاب نفوذی، اندازه گیری سطح ویژه، مشخصهیابی جریان – ولتاژ، IPCE و طیف سنجی امپدانس الکتروشیمیایی بوده است. محقق طرح یادآور شد: نتایج این طرح در صنعت برق و انرژی و به طور خاص بحث انرژیهای تجدیدپذیر قابل کاربرد خواهد بود. نتایج این تحقیقات که حاصل همکاری دکتر محمدرضا گل و بستان فرد و دکتر حسین عبدی زاده عضو هیأت علمی دانشگاه تهران است، در مجلهی Ceramics International منتشر شده است.
Permanent link to this article: http://peg-co.com/home/%d8%a7%d9%81%d8%b2%d8%a7%db%8c%d8%b4-%d8%b1%d8%a7%d9%86%d8%af%d9%85%d8%a7%d9%86-%d8%af%d8%b1-%d8%a8%d8%b1%d9%82-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c/

پنل های خورشیدی با تکنولوژی جدید
|
Permanent link to this article: http://peg-co.com/home/%d9%be%d9%86%d9%84-%d9%87%d8%a7%db%8c-%d8%ae%d9%88%d8%b1%d8%b4%db%8c%d8%af%db%8c-%d8%a8%d8%a7-%d8%aa%da%a9%d9%86%d9%88%d9%84%d9%88%da%98%db%8c-%d8%ac%d8%af%db%8c%d8%af/

عمر مفید صاعقه گیر های الکترونیکی
فروش ویژه صاعقه گیر اذرخش
عمر مفید صاعقه گیر های الکترونیکی
با توجه به گارانتی های بالای ۱۵ سال اکثر سازنده های صاعقه گیر های الکترونیکی میتوان بطور یقین گفت مدارت الکترونیکی موجود در صاعقه گیر های فوق دارای عمر مفید بالا هستند.
و با توجه به این که جریان صاعقه از سطح بیرونی این تیپ صاعقه گیرها میگذرد اصابت مکرر صاعقه هم خللی در انها ایجاد نمیکند.
فقط تنها قسمت اسیب پذیر در این نوع صاعقه گیر ها نوک فولادی انهاست که در صاعقه های با جریان بالای ۱۰۰ کیلو امپر امکان پریدگی در نوک انها وجود دارد که انهم بسادگی قابل تعویض میباشد.
عمر مفید صاعقه گیر های الکترونیکی
Permanent link to this article: http://peg-co.com/home/%d8%b9%d9%85%d8%b1-%d9%85%d9%81%db%8c%d8%af-%d8%b5%d8%a7%d8%b9%d9%82%d9%87-%da%af%db%8c%d8%b1-%d9%87%d8%a7%db%8c-%d8%a7%d9%84%da%a9%d8%aa%d8%b1%d9%88%d9%86%db%8c%da%a9%db%8c/