Daily Archive: ۳ دی ۱۳۹۶

مديريت وبسايت بهروز عليخانی

مزایا و معایب یو پی اس های(ups) آنلاین و آفلاین

opti-ups_ds1500b_front

۱- یو پی اس آنلاین

عملکرد دستگاههای On Line Double Conversionبدین صـــورت می باشد که بـــــرق شهــر( برق AC ) پس از ورود به UPS به رکتیفایر رفته و تبدیل به برق DC می شود و توان مورد نیاز inverter و Charger را تامین می نماید ، سپس قسمت Inverter برق DC  موجود را تبدیل به برق AC نموده و پس از فیلتر کردن ، آن را به خروجی UPS منتقل می نماید اصطلاحاً برق AC به DC ومجدداً به AC تبدیل شده و بدین ترتیب برق ورودی به UPS  ( برق شهر ) و برق خروجی از UPS از هم ۱۰۰ % ایزوله می باشند .

onlinediagram

پس همواره UPS On Line  فعال بوده و در تمام ساعت کاری عمل فوق مرتباً انجام می شود و هرگز برق شهر مستقیماً به مصرف کننده ها متصل نمی باشد و مصرف کننده ها همواره از برق سینوسی و سالم که توسط اینورتر دستگاه UPS ساخته می شود استفاده می کنند .

از جمله مهمترین مزایای سیستم On Line، این است که برق توسط رکتیفایر از AC به DC و سپس مجدداً توسط اینورتر از DC به AC تبدیل می شود لذا اختلالات برق شهر به مصرف کننده منتقل نمی شود .

از دیگر مزایای این UPS ها ، داشتن قابلیتهای فنی بالاتر ، محدوده وسیع تر برای ولتاژ ورودی برق شهر ، داشتن رگولاسیون خروجی مناسب تر ( برای ولتاژ و فرکانس ) ، تحمل اضافه بار بیشتر می باشد  که نهایتـــاً Reliability  بالاتــــری را نسبت به UPS هـــای Off Line  ایجاد می کند .

به همین دلیل UPS هایی که برای مکانهای حساس مثل : شبــــکه های بزرگ رایانـــه ای ، Main Frame  ، لوازم حساس پزشکی ، مخابراتی،  سرورهای بسیار حساس و …. استفاده می شوند و همچنین UPSهای  توان بالا و سه فاز همگی باید از نوع On Line  باشند .

در مکانهایی که برق شهری دارای نوسانات زیاد ولتاژ بوده و برق شهر به صورت مکرر قطع میشود. نیز از دستگاه UPS با تکنولوژی On Line استفاده میگردد .

با توجه به تکنولوژی سیستم های On Line ، این سری UPS ها قادرند تمامی ۹ مورد ایراد برق شهر را برطرف کرده و برق بسیار تمیزتر و مطمئنی در اختیار مصرف کننده ها قرار دهند.

۲- یو پی اس آفلاین:

در یوپی اس با تکنولوژی Off Line مصرف کننده ها از مسیر By pass انرژی دریافت می کنند.(برق شهر ورودی مستقیما به مصرف کننده ها وصل است)  و اگر تغدیه مسیر By pass به هر دلیلی قطع شود یا ولتاژ آن خارج از محدوده قابل قبول و مجاز قرار گیرد مسیر اینورتر جایگزین می گردد.

offline-diagran-300x167 (1)

در طی عملکرد معمولی UPS هر اختلال و اعوجاجی که در محدوده تعریف شده ورودی دستگاه باشد به مصرف کننده ها منتقل می شود.

هر چند در UPSهای با این تکنولوژی در مسیر By pass توسط ترانس موجود، افزایش و کاهش ولتاژ تا حدودی جبران می گردد ( که اصطلاحا به آن استابیلایزر اطلاق می شود) ولی با توجه به ایرادات برق شهر که مورد بحث قرار گرفت با  این تکنولوژی تنها دو ایراد از (نه = ۹) مشکل برق شهر برطرف میشود.

اگر ولتاژ ورودی برق شهر (‌ولتاژ By pass )‌از محدوده تعریف شده خارج یا قطع گردد اینورتر دستگاه روشن می شود و خروجی از مسیر اینورتر تغذیه می گردد روشن شدن اینورتر، زمانی بین ۲ تا ۱۰ میلی ثانیه مصرف می کند که سیستم های سویچینگ معمولی آن را تحمل کرده و قطع نمی شوند.

با توجه به ساختار اینورتر UPS ، که فقط در موارد خاص روشن میشود و در بقیه زمانها خاموش است. این قطعه دارای محدودیت زمان کارکرد می باشد ( برخلاف یو پی اس On Line که در آن اینورتر همیشه روشن است.).

هرچند با افزایش قدرت شارژر در این دستگاههای میتوان محدودیت جریان شارژر را برطرف کرد، ولی بعلت ساختار اینورتر امکان ارائه زمانهای پشتیبانی ( Backup time ) به صورت طولانی و نامحدود وجود ندارد.

Permanent link to this article: http://peg-co.com/home/%d9%85%d8%b2%d8%a7%db%8c%d8%a7-%d9%88-%d9%85%d8%b9%d8%a7%db%8c%d8%a8-%db%8c%d9%88-%d9%be%db%8c-%d8%a7%d8%b3-%d9%87%d8%a7%db%8cups-%d8%a2%d9%86%d9%84%d8%a7%db%8c%d9%86-%d9%88-%d8%a2%d9%81%d9%84%d8%a7/

مديريت وبسايت بهروز عليخانی

مقاوم سازی تاسیسات برقی در برابر زلزله با مصالح هوشمند

۲۴۶۷۵۱۴

مقدمه:

موضوع زلزله همواره برای جامعه مهندسین چالش برانگیز بوده و از آنجاییکه میهن عزیزمان در منطقه زلزله خیز قرار دارد، حساسیت و نگرانیهای طراحان را بیش از پیش به خود جلب کرده است. در این تحقیق سعی شده است تا با انتخاب موضوعی جدید در خصوص طراحی تاسیسات برقی و ابنیه مربوط به آن در برابر زلزله و بارهای غیر متعارف، سهم خود را به عنوان گروهی از جامعه مهندسین در راستای اصلاح طراحی سازه های مقاوم به جا آوریم. لازم به ذکر است که این تحقیق مبنای آغاز مباحث مصالح و سازه های هوشمند است و به زودی تمامی مقالات و یافته های جدید در این زمینه، در این سایت بارگذاری خواهد شد.

thG5RWVDYT

سیستم های هوشمند سازه ای مفهومی جدید در مبحث حفاظت سازه ای هستند. این سیستم ها انرژی مخرب و نیروی معکوس را جذب کرده و پاسخ سازه ای و خرابیهای حاصله را کاهش می دهند.

تحقیقات پیشرفته، مصالحی طبیعی و ساخته دست بشر را کشف کرده است که خود را با تغییرات محیطی تطبیق داده و سیستمهای تطبیق پذیر نام گرفته اند. این کشفیات ما را به سمت مفهومی جدید به نام سازه های هوشمند هدایت کرده اند. تعریف مصالح هوشمند به این صورت است: « مصالحی که بتوان خواص آنها از جمله تنش، دما، رطوبت، PH، خواص الکتریکی و مغناطیسی راکنترل نمود». این مصالح  با توجه به مشخصات و خواصشان به چند زیرگروه مطابق شکل زیر تقسیم شده اند.

۵۹۴

تعدادی مصالح هوشمند که در حال حاضر استفاده از آنها متداول است:

پلیمر/آلیاژهای حافظه دار:  این مصالح می توانند از تغییر شکل زیادی که در آنها بر اثر تنش و دما ایجاد می شود به حالت اولیه باز گردند که به آنها به اصطلاح «شبه الاستیسیته» گفته می شود. زمانی که مصالح/پلیمر در دمای پایین تغییر شکل می دهند، با افزایش دما و رساندن آن به یک دمای معین به شکل اولیه باز می گردند که به این روش «تبدیل معکوس» می گویند. این مصالح کاربردی منحصر بفرد می توانند درکنترل غیر فعال، نیمه فعال و فعال سازه های عمرانی مورد استفاده قرار گیرند. خود ترمیمی سیستم های سازه ای که از آلیاژهای حافظه دار مسلح مارتنزیت* استفاده می کنند، نمونه ای از کنترل فعال سازه ای است.

*مارتنزیت (به آلمانی: Martensite) بطور کلی به ساختارهای بلورینی گفته می‌شود که توسط استحاله مارتنزیتی به وجود بیایند. اما این اصطلاح بیشتر به فاز مارتنزیت در فولادهای سخت‌شده اطلاق می‌شود.

۵۹۸

مصالح/پلیمر خودترمیمی: این مصالح قابلیت ترمیم خسارات را داشته که به افزایش عمر مفید آنها کمک می کند. این مصالح بیولوژیکی که به صورت عملکردی بهینه شده اند، می توانند خود را در مقابل بارهای تحملی مکانیکی خارجی ترمیم کنند. اخیرا، کاربرد بتن خود ترمیم شونده در مهندسی عمران توجه بسیاری به خود جلب کرده و موضوع تحقیقات کاربردی محور است. باید به این نکته توجه کرد که عرض ترک در روند خود ترمیمی نقش اساسی بازی می کند. به همین دلیل، کامپوزیتهای سیمانی مهندسی (ECC) برای کنترل عرض ترکها، حتی در کششهای بالا،  با میزان معین تولید شده اند. یکی از پیشرفتهای اخیر دانشگاه تکنولوژی دلفت(DELFT)، دستیابی به یک عنصر ترمیم گر بیوشیمی دوعنصره است. این نوآوری، ترکیبی از بذر باکتری با کلسیم لاکتات* است. این نوع از بتن برای ساخت مسیرهای انتقال پساب های خطر ناک زیرزمینی ایده ال است . باید در نظر داشت که استفاده از این نوع  بتن در حال حاضر برای ساختمان های مسکونی امکان پذیر و اقتصادی نیست.

*کلسیم لاکتات (به انگلیسی: Calcium lactate) با فرمول شیمیایی C۶H۱۰CaO۶ یک ترکیب شیمیایی با شناسه پاب‌کم ۱۳۱۴۴ است. که جرم مولی آن ۲۱۸٫۲۲ g/mol می‌باشد. شکل ظاهری این ترکیب، پودر سفید است.

مصالح کروموژنیک: به این مصالح آفتاب پرست می گویند زیرا به صورت برگشت پذیر رنگ آنها با تغییر شرایط محیطی تغییر می کند. نوع خاصی از مصالح کروموژنیک به نام مکانوکرومیک/پیزوکرومیک وجود دارند که توانایی تغییر رنگ تحت محرکهای مکانیکی را دارند. کاربرد این مصالح در صنعت ساختمان سازی به این صورت است که نقص های سازه ای از جمله شکست، خوردگی، خستگی و یا خزش را پایش کرده و تشخیص می دهند.

۵۹۷

مهمترین مشخصه مصالح هوشمند این است که خواص آانها تحت شرایط بیرونی تغییر می کند و این تغییر، برگشت پذیر و به دفعات زیادی قابل تکرار است. اولویت این مصالح به مصالح معمولی مانند آجر، بتن و فولاد این است که آنها می توانند در سازه هایی با عملکرد بالا در شرایط محیطی سخت بکار روند. این مصالح به مهندسین فرصت طراحی سازه / زیرساخت هایی با عملکرد بالا را در موارد بارهای غیرمتعارف تحت انفجار و با زمین لرزه را  می دهند.

اهمیت استفاده از مصالح هوشمند

سازه ها و زیرساختهای عمرانی شامل خطوط انتقال و توزیع برق – پستهای توزیع و فوق توزیع برق – سدها، پل ها، برج ها و تونل ها ممکن است براساس بارهای دینامیکی زلزله/ باد های شدید به شدت آسیب دیده و یا فروریزند. علی رغم تلاش زیاد مهندسین در طراحی ها و توسعه دستورالعمل ها جهت دریافت عملکرد بالاتر، هنوز این سازه ها در مقابل باد های شدید و محرکهای زلزله آسیب پذیر هستند. دلیل آن این است که سازه هایی که با دستاوردهای سنتی طراحی می شوند، ظرفیت محدودی برای مقاومت در برابر بار و اتلاف انرژی ناشی از آنها دارند. چنین سازه هایی جهت مقابله با نیروی زلزله، تنها از سختی و  میراگری ناچیز خود برای دفع انرژی استفاده می کنند. این سازه ها به حدی منفعل هستند که نمی توانند خود را با تغییرات ناگهانی و غیر قابل پیش بینی  بارهای ناشی از زلزله و باد شدید تطبیق دهند. در جهت مقابله و رویارویی با این بارها، نیاز به طراحی سازه هایی محکم با انعطاف بالا می باشد که معمولا متریال مورد استفاده برای چنین سازه هایی بسیار گران قیمت هستند. بزرگ شدن مقاطع اعضاء سازه برای افزایش مقاومت، درحقیقت نیروی بیشتری جذب کرده، و متعاقبا نیاز به مقاومت بیشتری دارد که طراحی را وارد یک مسیر دایره وار بی ثمر می کند.  علاوه بر این، هیچ راهی برای افزایش میراگری متریالهایی چون بتن آرمه و فولاد وجود ندارد. ناکارآمدی مصالح سنتی در برابر باد و زلزله منجر به کاربرد تکنولوژی سازه های هوشمند نوآورانه در سازه های عمرانی در دهه ۱۹۷۰ شد. این موضوع به طور پیوسته با پیشرفت تحقیقات در این زمینه و آزمایشهای عملی، مورد پذیرش قرار گرفت و نشان داد که راهی مطمئن برای حفاظت سازه ها در برابر باد و زلزله می باشد.

۱۳۹۵۰۱۲۹۰۰۰۱۲۴_PhotoL

 کامپوزیت/نانو مصالح هوشمند: این مصالح می تواند مشکلات کنونی ساخت و ساز را به صورت قابل ملاحظه حل کنند. کاربرد نانو تکنولوژی در صنعت ساختمان می تواند در لیست اعضاء سازه ای سبکتر و محکمتر با عملکرد سازه ای بهتر تحت بارهای لرزه ای و گرانشی قرار گیرد، درحالیکه کمترین پوشش را برای نگهداری و درصد انتقال حرارت کم به همراه نانو سنسورها هستند. یکی از آخرین توسعه های کاربردی در این زمینه، تولید ذرات نانو سیمان ها برای اصلاح  عملکرد سازه ای و دوام اعضاء بتنی می باشند.

منبع:kargosha.com

Permanent link to this article: http://peg-co.com/home/%d9%85%d9%82%d8%a7%d9%88%d9%85-%d8%b3%d8%a7%d8%b2%db%8c-%d8%aa%d8%a7%d8%b3%db%8c%d8%b3%d8%a7%d8%aa-%d8%a8%d8%b1%d9%82%db%8c-%d8%af%d8%b1-%d8%a8%d8%b1%d8%a7%d8%a8%d8%b1-%d8%b2%d9%84%d8%b2%d9%84%d9%87/

مديريت وبسايت بهروز عليخانی

ویژه گیهای چاه ارت صاعقه گیر

nemaye-shematik

بررسی سیستم زمین یا چاه ارت صاعقه گیر SYSTEM EARTH TERMINATION :

نگاه اجمالی: در هر سیستم صاعقه گیر، تمامی پتانسیل سیستم در جذب و انتقال صاعقه به زمین نهاد شده است. در این سیستم جذب صاعقه به وسیله ی هادی های میله ای یا شبکه، انجام و جریان جذب شده توسط هادی های پایین رو به شبکه ی زمین انتقال داده می شود. در شبکه ی زمین که شامل الکترودها، اتصالات و هادی های مسی است، انتقال این جریان به زمین در کمترین زمان صورت می پذیرد. تفاوت سیستم زمین در یک  صاعقه گیر با شبکه ی ارت سیستم برق ساختمان نیز به همین دلیل است. در شبکه ی صاعقه گیر بار استاتیک باید در سطح زمین گسترده شود تا بارهای غیر همنام اثر یکدیگر را خنثی (بار منفی ابر و مثبت زمین) کنند، اما در سیستم برق ساختمان جهت انتقال جریان نشتی از طریق شبکه ی زمین به نقطه ی خنثی ترانسفورماتور باید الکترود ارت به طریق خاص باشد.

L6349663265821-1
هر سیستم زمین مربوط به صاعقه گیر در سه قسمت بررسی شده است: 
الف: در فرانسه و اکثر کشورهای پیشرفته ی دنیا، مقاومت حداکثر ۱۰ اهم جهت سیستم زمین هر صاعقه گیر پیشنهاد می شود. اندازه گیری این مقدار با باز کردن کلمپ تست و اندازه گیری مقاومت الکترودهای زمین به روش های ۲ سیمه و ۴ سیمه انجام پذیر است. در صورتی که مقاومت ۱۰ اهم مورد نیاز در این قسمت حاصل نگردد، استاندارد پیشنهاد افزایش طول الکترودهای زمین، نصب میله های ارت در خاتمه هادی های زمین الکترودها و استفاده از الکترولیت های مجاز مانند سولفات ها، بنتونیت و غیره را داده است.
افزایش طول هادی زمین (الکترودها) تا ۱۰۰ متر یعنی هر هادی تا ۲۰ متر نیز مجاز است.

ب: توانایی هدایت جریان

جهت افزایش توانایی حمل جریان توسط هادی زمین، نیاز به سه هادی (الکترود) به جای یک الکترود پیشنهادی استاندارد است. افزایش تعداد هادی ها موجب افزایش طول هادی و دمپ سریع تر جریان صاعقه می گردد.

ج: هم بندی اضافه (هم پتانسیل کردن)

صاعقه-گیر-PASSIVE

استاندارد نیاز به یک هم بندی اضافه جهت هم پتانسیل کردن در سیستم صاعقه گیر و سیستم ارت ساختمان را لازم و ضروری می داند.
بازرسی های سیستم صاعقه گیر: تمامی اجزای یک صاعقه گیر از میله تا سیستم زمین نیاز به بازرسی های دوره ای و اندازه گیری مقاومت دارند. فرایند تست و بازرسی به شرح زیر است:
سیستم حفاظت با سطح بالا (لول یک) سالیانه؛
سیستم حفاظت با سطح خوب (لول دو) دو ساله؛
سیستم حفاظت با سطح معمول سه ساله.
در ضمن پس از هرگونه تعمیرات ساختمان یا اصابت صاعقه بر سیستم، باید بازرسی و تست ها مجدداً انجام پذیرد.

انواع الکترودهای زمین در سیستم صاعقه گیر:

ابتدا سیستم الکترود زمین در صاعقه گیر ساده ESE بررسی می شود: 
۱- الکترودهای سه گانه (پنجه اردکی): در این سیستم سه شمش مسی با ابعاد ۲×۳۰ میلی متر به صورت پنجه اردک است. هر کدام از شمش ها فاصله ی ۴۵ درجه با شمش وسطی دارند و (حداکثر) طول کل شمش ها ۲۵ متر است و به سه قسمت – یکی از شمش ها حدود ۲ متر بلندتر است – تقسیم می شوند.
دو شمش کناری با زاویه ی ۴۵ درجه به شمش وسط در انتها با استفاده از کلمپ مسی یا کدولد وصل می گردند. شمش وسط پس از ارتباط با شمش دیگر به طرف نقطه ی تست ادامه می یابد. طول الکترودهای زمین بستگی به مقاومت زمین دارند و از ۶ متر به بالا ادامه می یابند.
۲- میله های ارت: در صورتی که جغرافیای ساختمان اجازه ی استفاده از شبکه ی پنجه اردکی را ندهد، می توان از سیستم مثلث متساوی الاضلاع با طول هر ضلع ۲ متر که میله ی ارت به انتهای هر زاویه متصل شده است، استفاده نمود. طول میله ی ارت ۲ متر است. هر میله با زاویه ی مربوطه کلمپ یا جوش کدولد می گردد.
۳- سیستم ترکیبی: در صورتی که عمل الکترودهای زمین دارای وسعت باشد، می توان جهت کاهش مقاومت زمین از ترکیب شبکه ی پنجه اردکی و میله ارت (در انتها) استفاده نمود.

HD-security-camera-system-HDIP32128-L1

شبکه ی زمین در صاعقه گیر شبکه ای (شبکه قفسه ای):

در برق گیر نوع شبکه ی قفسه ای از دو سیستم پنجه اردکی و میله ی ارت می توان استفاده نمود.
۱- شبکه ی ارت پنجه اردکی: اتصالات به وسیله ی ۳ تسمه ی مسی ۲×۳۰ میلی متر که یکی از تسمه ها بزرگ تر است و دو عدد دیگر با زاویه ی ۴۵ درجه در انتها به شمش اصل جوش کدولد و یا کلمپ می گردند، صورت می پذیرد. طول مفید هر یک از هادی ها ۲ متر و در عمق ۶۰ تا ۸۰ سانتی متری زمین دفن می گردند.
۲- میله های ارت: در این حالت میله های ارت به صورت عمودی به طول ۲ متردر داخل زمین کوبیده می شوند. فاصله ی آن ها ۲ متر از یکدیگر و فاصله از پی یک تا ۵/۱ متر است. این دو میله به وسیله ی شمش مسی ۲×۳۰ به یکدیگر کلمپ و یا جوش داده می شوند .
علت تفاوت شبکه ی زمین در دو سیستم صاعقه گیر ESE و شبکه ی قفسه ای به خاطر احتمال جذب صاعقه ی آن ها است.

محل اجرای چاه ارت صاعقه گیر:

چاه ارت صاعقه گیر چه بصورت عمقی و چه بصورت سطحی و ماتریسی , بایستی در محلی اجرا گردد که علاوه بر اینکه در نزدیکترین محل ممکن به صاعقه گیر باشد حداقل فاصله حریم مجاز تا ساختمان (فاصله ۵ متر) رعایت گردد.

 

Permanent link to this article: http://peg-co.com/home/%d9%88%db%8c%da%98%d9%87-%da%af%db%8c%d9%87%d8%a7%db%8c-%da%86%d8%a7%d9%87-%d8%a7%d8%b1%d8%aa-%d8%b5%d8%a7%d8%b9%d9%82%d9%87-%da%af%db%8c%d8%b1/